
Rapid Assessment of Data Set Structures

 Phil Vecchione, Cognigen Corporation, Buffalo NY

ABSTRACT
When SAS® data is received from an external source, such as a
sponsor, CRO, or another department, it is important to assess
the new data to determine if variables have been added or
removed, locate specific variables, and identify missing data in
key datasets. Changes in dataset structure can have an impact
on existing analysis programs, requiring modifications or creation
of new programs, which uses up valuable analysis time.

In order to speed up this process and create an efficient way to
assess new SAS® datasets, a family of macros has been
designed to quickly obtain this information. These macros work
for individual datasets as well as for a library of datasets. They
rapidly provide output that identifies potential problems, allowing
the user to communicate them back to their external source
quickly; therefore streamlining the process time from data receipt
to final analysis.

INTRODUCTION
Cognigen provides data analysis and consulting services for the
pharmaceutical and biotechnology industries during clinical
development of new medicines. The population-based statistical
and pharmacokinetic/pharmacodynamic modeling performed at
Cognigen requires targeted data assembly of multiple datasets
within and across clinical trials. As a data analysis firm, we
receive data from a number of different sponsors for various
projects. Each of these sponsors has their own data
management systems and database structures. Many sponsors
also contract with laboratories or CRO’s that generate data and
transmit it directly to Cognigen, during the course of the study.
Because of this, we encounter data in a variety of formats and
structures and need to quickly navigate the data so that we can
assemble the data into a usable form and perform our analysis.

Typically we receive clinical data as SAS® transport files
containing 20 or more datasets, comprising the various database
tables used by the sponsor. In the beginning of a project we will
receive a transmission of data and need to determine which
variables are common between datasets, locate specific variables
by keywords in their variable name or label, and determine the
completeness of data for critical tables. During the course of a
given project we may receive updates of data several times. The
sponsor may have added or removed variables from some of the
datasets, as they get closer to their internal primary analysis. This
change in variables can directly impact the programs that have
been written to analyze the data.

In order to efficiently analyze data, we require the ability to rapidly
summarize the structure of the incoming data, determine if
variables have been added or removed, locate specific variables
by keyword, and determine missing data in key datasets. To
assist us in these efforts, a collection of macros, which we refer
to as the VAR family, has been designed to quickly obtain this
information. These macros, when added to a program written to
unpack a transport file or to load data from another file format,
provide concise output, which enables the programmer to identify
potential problems with the data. The data issues can then be
communicated to the sponsor quickly and efficiently for
resolution. Rapid prospective identification and communication
of data issues decreases the time it takes to resolve the issues
and affords more time to analyze the data.

THE VAR FAMILY OF MACROS
Designed to quickly identify the common data problems we have
encountered in various projects, each member of the VAR family
of macros has a specific use. The VAR family consists of the
following four macros: varlist, which creates a list of all the
variable names for a given library of data and shows which
variables are common across different datasets; varcomp, which
compares the variable names between two libraries of data and
reports which variables have been added or deleted; varscan,
which searches a list of variable names and variable labels for a
given keyword; and varsum, which displays all the variables for a
given table and lists the number of missing and non-missing
values for each variable.

The VAR family is considered a family of macros because each
macro is related to the others. Varcomp and varscan both call
varlist as part of their program. This makes varlist the parent
macro, and the other two the children macros. Varsum is the
cousin of varlist because it does not call varlist directly but
contains code that was originally from varlist, which was modified
to run on a single dataset. The diagram below shows the
relationship among the macros in the VAR family.

Varlist utilizes the OUT option of PROC CONTENTS to create a
dataset that contains all the metadata about the dataset. At the
time that the VAR family was created, I was not aware of how to
access the Data Dictionary tables. The vcolumn table contains
the same data that varlist generates and could be obtained with
less code. The advantage of using PROC CONTENTS is that you
can also generate other information about each dataset, such as
number of observations, that vcolumn does not contain but is
located in some of the other dictionary tables. Using the Data
Dictionary tables to assemble all the information from the various
tables would require more code then using PROC CONTENTS,
where the data is already assembled.

Varcomp and varscan are considered the child macros of varlist
because they use the dataset created by varlist to perform
specific functions. Because of their relation to varlist, other VAR
macros can be made using varlist as the parent, and expanding
on varlist’s output.

The sections that follow describe each macro, outline their uses,
and detail some sample output from each one. In addition,
several small case studies are presented where the VAR family
was used to identify data anomalies.

VARLIST
MACRO CALL:
%varlist (whatlib=libref, wherelib=libref, print=(0 | Null))

FUNCTION: To create a list of all the variable names within a
given library and to list all cases where a variable exists in more

VARLIST

VARSUM

VARCOMP VARSCAN

than one dataset.

USE: To summarize newly received libraries of data and to show
how the datasets are related. We use this macro to get our first
look at new data. From this list we can usually determine what
the major merge variables are, as they will be located in all
tables. Because we work with a number of different sponsors,
each of whom have their own database systems, a variable as
simple as a Subject Number could have many possible variable
names which sometimes are not obvious to an external user.
Also, when performing merges of tables, it is helpful to know if
two tables have variables with the same name so that the data is
not overwritten in the merge.

MECHANISM: Varlist runs on a specified library of data that is
defined in the whatlib parameter. It creates a list of all the
datasets in the specified library and then begins to assemble a
dataset that contains the memname (dataset), variable name,
type, length, label, format, and informat.

Once the dataset is assembled, a list of the dataset is printed
using PROC PRINT. Then a second list is created using a DATA
NULL step that prints a summary for each variable contained in
multiple datasets. This list contains the variable name, label, and
a list of all the datasets in which the variable is contained.

Varlist has two other parameters that can be used by other
programs and are used by the other members of VAR family.
The first is the wherelib parameter. This parameter is used to
determine the library where the metadata dataset will be created.
Typically WORK is the specified directory, so no permanent
dataset is created. If a permanent dataset is desired, then
another libref could be given, and varlist would output the dataset
to that library.

The second parameter is the print parameter. This parameter is
optional. When it has the value of 0, varlist does not create the
two lists described above. When the parameter is not specified or
given any value other then 0, the lists are printed. This parameter
is used by the other VAR family macros so that varlist creates the
necessary datasets but does not create a text output, when
called.

EXAMPLE OUTPUT: The example below shows a typical output
from the varlist macro. The first part is an excerpt of the variable
list. The second part is an example of a variable located in two
different datasets.

Complete list of Variables from:
SAMPLIB

MEMNAME NAME TYPE LENGTH LABEL FORMAT

BLODSAMP DAY 1 8 STUDY DAY
DRUGADMN DAY 1 8 STUDY DAY
EXAM DAY 1 8 DAY
MEAL DAY 1 8 STUDY DAY
QUESTION DAY 1 8 STUDY DAY
VITALS DAY 1 8 DAY
FORMATS DEFAULT 1 5 DEFAULT
EXAM DESCR1 2 40 DESC1
EXAM DESCR2 2 40 DESC2
DEMOG DOB 1 8 DATE OF BIRTH DATE

Variable Name: BIRTHD
Label: Date of Birth

Data Sets: DEMOG

SUMMARY

VARCOMP
MACRO CALL: %varcomp (newlib=libref, oldlib=libref)

FUNCTION: To compare the variable lists from two libraries of
data and to determine which variables have been added, which
have been removed, and which are the same.

USE: This macro is used when we receive an updated library of
data. Typically we receive data at the beginning of a project,
several times during the course of the study, and then the final
locked dataset. This macro looks at the library of data we
currently have and compares the newly arrived data to determine
if any changes have occurred. When changes are noted, we are
able to assess if those variable changes are going to impact our
data assembly and data analysis programs.

MECHANISM: Varcomp starts by creating datasets of metadata
from the two libraries. This is done by calling varlist with the
print=0 parameter, twice. Once the datasets have been made,
they are then merged by memname and variable name and put
into three datasets using the IN option: newvar, lostvar, and
merglst.

The newly created list begins with a summary of the number of
variables in each of the three datasets followed by a list of newvar
and lostvar.

EXAMPLE OUTPUT: The example below shows a typical output
from the varcomp macro where there are differences in the
variables between two libraries.

VarComp Summary Report

Number of Variables that are the same: 1128

Number of Variables that are new: 9

Number of Variables that are lost: 2

Variables Not In Previous Data Set
(New Variables)

OBS MEMNAME NAME LABEL

1 ADE DRUG
2 ADE PAGEDONE PAGE WAS DONE
3 DOSTUDY DRUG
4 EOS DRUG
5 MED_HX DRUG
6 OTHMED DRUG
7 SMEDACC DRUG
8 VITAL DRUG
9 VITAL PAGENO PAGE NUMBER

N = 9

Variables In Previous Data Set but Not In New
Data Set

(Missing Variables)

OBS MEMNAME NAME LABEL

1 ADE PTINIT PATIENT INITIALS
2 OTHMED PTINIT PATIENT INITIALS

N = 2

VARSCAN
MACRO CALL:
%varscan (whatlib=libref, keyword=text, field=[N,L,B])

FUNCTION: To search a list of variable names and labels in
order to locate variables that match the keyword.

USE: This macro is used when we receive a new library of data
and want to locate commonly used variables such as sex, race,
concentration, dosing, etc. Rather then reviewing the output of
varlist or a stack of PROC CONTENTS, this macro will locate all
possible instances and display them in a list.

MECHANISM: Varscan starts by creating a dataset of metadata
by calling varlist with a print=0 parameter. Then the dataset is
pared down by using a where statement which uses both the
sounds-like and like options to find potential matches to the
keyword that is specified. The keyword has to be a single word.

The field parameter allows the user to specify which fields
varscan should search. A value of N searches only the variable
name field. A value of L searches only the variable label field. A
value of B searches both the variable name and label fields. The
default setting is B, and if the field parameter is not included, the
search is performed on both the variable name and label fields.

EXAMPLE OUTPUT: The example below shows a search for
both variable names and variable labels that contain the keyword
“dose.”

B: Variable Name Search for Labels and
Variables that sound like: dose

From Library: lib018

Obs MEMNAME NAME LABEL

1 CONMED DOSE DOSE
2 DRUGADMN DOSE COMPOUND DOSAGE

N = 2

B: Variable Name Search for Labels and
Variables that contain: dose

From Library: lib018

Obs MEMNAME NAME LABEL

1 CONMED DOSE DOSE
2 DRUGADMN DOSE COMPOUND DOSAGE
3 CONMED UNITS DOSE UNITS

N = 3

VARSUM
MACRO CALL: %varsum (whatlib=libref, dset=dataset)

FUNCTION: To summarize a given table and determine for each
variable the number of missing and non-missing values.

USE: In a library of data, there may be some datasets that are of
critical importance, such as patient demographics. In these cases
it is important to know how complete the data is for every
variable. If important merge variables are missing, then the data
will not merge properly. If dosing times and dates are missing,
then it will be more difficult to assemble a dataset for analysis.
This macro creates a summary table and provides a list of
missing and non-missing values, allowing us to rapidly identify
holes in the data.

Varsum is the workhorse of the VAR family. Using varsum, we
are able to see the completeness of the data for any dataset via a
straightforward summary table. This output is very useful to
project team members who need to see a concise summary of
the data in order to make analysis decisions based on the
completeness.

MECHANISM: The cousin of varlist, varsum similarly creates a
dataset of variable names from the dataset specified in the dset
parameter. Using that metadata list as the list of variables in the
table, varsum begins to count the blank and non-blank values for
each variable. It does this by taking each variable one at a time
and, for each record, determining if the value is missing or not
missing and summing these counts. The metadata for the
variable and the number of missing and non-missing values are
then transferred to a new dataset as a single record.

When all the variables have been scanned, the final dataset of
metadata and counts is then outputted as a list.

EXAMPLE OUTPUT:

Variable List for dataset: lib1.conc

Num Var Label Type N MISS
1 PROT Protocol Character 884 0
2 CENTER Center # Character 884 0
3 SUBJECT Subject # Character 884 0
4 SAMPLE SampleType Character 884 0
5 DRDTRAW Draw Date Character 884 0
6 DRAWDT Draw Date (SAS)Numeric 884 0
7 VISIT Visit Desc Character 884 0
8 ANALYT Analyte Character 884 0
9 LAB Analytical Lab Character 884 0
10 EXTID External ID # Character 884 0
11 CONC Concen. Character 873 11
12 UNITS Units Character 884 0
13 COMENT Lab Comments Character 17 867

CASE STUDIES
The next section shows three cases where the VAR family of
macros was used to gain knowledge of newly arriving data. In
each case, the macros were called at the end of the program that
was used to process the data. From the macro output, we were
able to locate potential issues and have them resolved the same
day the data was loaded.

CASE STUDY #1- NEWLY ARRIVED DATA; NO PAPERWORK
In this first case, a client sent us a transport file of SAS® datasets
without sending any paperwork regarding database mappings,
key fields, etc. The data needed to be unpacked, and data
assembly needed to occur as soon as possible.

Varlist and varscan were both used. Varlist generated a list of all
the variable names in the library of data as well as lists of which
variables were located in multiple datasets. From the second part
of the list we were able to determine what the primary key
variable names were because certain variables appeared in every
dataset. This helped us understand how the various data tables
were related to each other.

We employed varscan several times using the keywords “conc,”
“dose,” “age,” “sex,” and “race.” The terms “conc” and “dose”
are common for datasets that contain drug concentration levels.
The like search of varscan will match “conc” to the word
concentration or to the common abbreviation of “conc.” Terms
such as “age,” “sex,” and “race” are typical for demographics
tables.

From the varscan output we were able to locate the

demographics table by keyword matches to “age,” “sex,” and
“race.” We were also able to determine that concentration data
was not sent to us by the lack of the keyword “conc.” The
keyword “dose” showed up in several other tables, as expected.

All of the varlist and varscan data was generated at the same
time that the data was unpacked, allowing us to make the
determinations above within 15 minutes of unpacking the data.

From the information that was obtained, the programmer
assembling the data knew which variables were potential merge
variables and that the concentration data was not present.

Had the programmer not had this up-front information, she would
have had to manually search various PROC CONTENTS listings
or visually survey tables using SAS View® to look for merge
variables. During the manual process she would have
determined that the concentration data was not present, but only
after an extensive review of the datasets. The whole process
would have taken hours, adding more time to data assembly and
taking time away from data analysis.

CASE STUDY #2- UPDATED DATASET
In this case we had an established relationship with our sponsor
and had previously received data from them in the form of
transport files containing their CRF database. On this day, a new
transport file arrived and needed to be unpacked.

The library was unpacked and varcomp was run on it. The list
from varcomp showed that 130 new variables had been added.
With some checking, it was discovered that the addition of most
of these variables was due to tables that had been added to the
library. Varcomp also identified several derived variables that the
sponsor, as they performed their internal analysis, added to the
datasets.

Using the information from varcomp, the project team was aware
of the additional variables and datasets minutes after the data
was unpacked. The team was then able to evaluate the new
analysis variables and datasets and determine if they could be
used in the analysis.

The sponsor’s cover letter did not indicate that new tables and
analysis variables had been added since their last data
transmission. Unless the programmer looked to count the tables,
they would not have immediately known which tables were
added, and their contents. Without varcomp, finding the new
variables would have been an even harder task, and could only
be determined by looking over PROC CONTENTS for each table
received.

CASE STUDY #3- CONCENTRATION FILE RECEIVED
In this case, we were working with a sponsor who had been
transmitting their CRF data to us and had contracted a CRO to
process PK samples and transmit the data directly to us. The
CRF data would come as a SAS® transport file, but the CRO sent
the PK concentrations as an Excel® file.

The study had reached the end of data collection and the
database had been cleaned and locked. The CRO transmitted
their locked data for the PK concentrations. Once all the data was
received, we would begin our analysis.

The Excel® file of concentrations was processed and transformed
into a SAS® dataset and a varsum call was added to the end of
the program. From the output of varsum, it was shown that 11
records had missing concentration values. Because this data was
locked and our analysis of it was about to proceed, we contacted
the sponsor the same day the data arrived and confirmed with
them that the missing values could not be recovered because

they were lost samples and were unable to be processed.

This confirmation was able to take place within an hour of
processing the data. Without using varscan to summarize the
completeness of the data, it may have been days before
someone working with the data realized the missing values and
only then queried the sponsor, at a marked loss of analysis time.

CONCLUSION
The VAR family of macros has become a standard tool for
analyzing incoming data at Cognigen. Using the VAR macros, we
are able to identify potential problems with newly processed data
and to communicate our questions to our sponsors in the same
day. This has taken the burden off our project programmers, who
assemble and analyze the data, and allows basic data checking
to be performed upon receipt of the data instead of during data
assembly.

With the structure of the VAR family, it is easy to create new
members of the family by creating calls to the other family
members. As we encounter new issues, we plan on creating
additional members of the family to address these issues.

ACKNOWLEDGMENTS
I would like to acknowledge the Data Management Department of
Cognigen Corporation. As a relatively new SAS® programmer, I
have worked with every member of the Data Management team
to answer questions and solve problems I encountered while
creating the VAR family. Thank you to the all the SAS®
Programmers in the Data Management Department for all your
time and help.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Phil Vecchione
 Cognigen Corp.
 395 Youngs Road.
 Buffalo, NY 14221-5831
 Work Phone: 716-633-3463 (1-800-248-4244)
 Fax: 716-633-7404
 Email: phil.vecchione@cognigencorp.com
 Web: www.cognigencorp.com

