

GastroPlus

aaps-VCU Student Chapter

American Association of Pharmaceutical Scientists

John DiBella

GastroPlus applications to various drug delivery routes of administration Webinar: Friday, December 11

7:30 PM CET (Paris) / 10:30 AM PDT (Los Angeles) / 1:30 PM EDT (New York)

https://zoom.us/join Meeting ID: 986 1112 0237 Passcode: AAPSVCU

S# SimulationsPlus

Maxime Le Merdy

Outline

Locally acting drug products

- Ophthalmic route of administration
- Inhalation route of administration

Pharmacodynamic modeling with GastroPlus

Locally acting drug products

Locally-Acting Drugs?

- The main site of action is local, e.g. the skin, the mucosal surface of the nose or lungs, the eyes, the gastrointestinal tract...
- Drug products not intended to be absorbed into the bloodstream
- If the API is detectable in plasma, does the plasma concentration time course reflect local concentrations?
- In the past FDA has relied on clinical endpoint bioequivalence studies when no other alternative was available

https://www.fda.gov/media/105890/download

Evaluation of BE for Topical Products

- <u>A Modular Framework for Characterization-Based BE</u>
 - Qualitative (Q1) and Quantitative (Q2) Sameness or 'No Difference'
 - Physical and Structural (Q3) Sameness or 'Similarity'
 - IVRT (In Vitro Release Test)
 - **IVPT** (In Vitro Permeation Test)
- Other Types of Evidence to Support a Demonstration of BE
 - In Vivo Pharmacokinetic Studies
 - In Vivo Pharmacodynamic (e.g., Vasoconstrictor) Studies
 - In Vivo Comparative Clinical Endpoint BE Studies
 - In Silico Quantitative Methods, Modeling and Simulation

14

www.fda.gov

Locally acting PBPK models

Pulmonary (PCAT[™])

6

Dermal (TCAT[™])

SCIENCE + SOFTWARE = SUCCESS

Ocular Compartmental Absorption & Transit model

History of the OCAT[™] Model

2008: Initial creation of the OCAT V1 model by Simulations Plus scientist in collaboration with Pfizer

> 2014-2017: Cooperation grant with the FDA → 3-year funded collaborative project with the FDA Office of Generic Drugs on the development of mechanistic models for ocular delivery.
 → Enhancement of the OCAT, creation of V2 and V3

>2018-2019: Contract with the FDA Office of Generic Drugs

➔ Protein binding in ocular tissues, ointment formulation

2020: New Collaboration with the FDA

Simulations Plus Receives New Grant Award from the FDA

Novel PBPK/PD modeling strategies for ophthalmic drug products will inform regulatory decision-making

The Eye and the OCAT[™]

Modes of Administration in the Eye

1) Topical

< 5% reaches anterior segment
Tiny fraction reaches Retina

2) Systemic

• Penetration is limited by blood aqueous and blood retinal barriers

3) Intravitreal

• Effective mode of administration for achieving therapeutic concentrations in retina

4) Transcleral

- Noninvasive
- Effectiveness is under investigation

Schematic of Drug Disposition from Ocular Doses (implemented in GastroPlus[®])

OCAT[™] Interface

Compound Specific and Physiological Parameters

atabase			
Compound	<u>P</u> hysiology	<u>E</u> nzymes	<u>I</u> ransporters
Permeshilitu (cm/s)	1 1 105 5		
	1.142E-0		
Metab CL (L/h)	0		
Sys Abs Rate Cnst (1/s)	1.142E-5		
			Set Comp De <u>f</u> aults
		ΟΚ	Cancel
		<u> </u>	
Aqueous Humor	Managerier & Vancel		
Aqueous Humor	Report Frank		
Aqueous Humor atabase Co <u>m</u> pound	Physiology	<u>E</u> nzymes	
Aqueous Humor Patabase Co <u>m</u> pound Volu	Physiology Ime (mL) 0.228	Enzymes	Iransporters
Aqueous Humor latabase Co <u>m</u> pound Volu	Physiology une (mL) 0.228	Enzymes Contact Surface Arr	Iransporters ea (cm ²) withCiliary Body 1.005
Aqueous Humor Database Compound Volu	Physiology ume (mL) 0.228	Enzymes Contact Surface Ar	Iransporters ea (cm ²) withCiliary Body 1.005
Aqueous Humor <u>Com</u> pound Volu Flow Rates Trab Mesh Flow Rate	Physiology ume (mL) 0.228 (uL/min) 1.35	Enzymes Contact Surface Are Iris Ar	Iransporters ea (cm^2) withCiliary Body 1.005 terior Sclera 0.3
Aqueous Humor Database Compound Volu Flow Rates Trab Mesh Flow Rate Uveo-scleral Flow Rate	Physiology ume (mL) 0.228 (uL/min) 1.35 (uL/min) 1.182	Enzymes Contact Surface Arr Iris Ar Anterior Vitr	Iransporters ea (cm^2) with -Ciliary Body 1.005 terior Sclera 0.3 eous Humor 0.884
Aqueous Humor Compound Volu Flow Rates Trab Mesh Flow Rate Uveo-scleral Flow Rate	Physiology ume (mL) 0.228 (uL/min) 1.35 (uL/min) 1.182	Enzymes Contact Surface Are Iris Ar Anterior Vitr	Iransporters ea (cm^2) with -Ciliary Body 1.005 terior Sclera 0.3 eous Humor 0.884
Aqueous Humor Database Compound Volu Flow Rates Trab Mesh Flow Rate Uveo-scleral Flow Rate	Physiology ume (mL) 0.228 (uL/min) 1.35 (uL/min) 1.182	Enzymes Contact Surface Arr Iris Ar Anterior Vitr	Image:
Aqueous Humor Database Compound Volu Flow Rates Trab Mesh Flow Rate Uveo-scleral Flow Rate	Physiology ume (mL) 0.228 (uL/min) 1.35 (uL/min) 1.182	Enzymes Contact Surface Ard Iris Ar Anterior Vitr	Iransporters Iransporters ea (cm^2) with Ciliary Body 1.005 terior Sclera 0.3 eous Humor 0.884 Set Phys Defaults
Aqueous Humor atabase Compound Volu Flow Rates Trab Mesh Flow Rate Uveo-scleral Flow Rate	Physiology ume (mL) 0.228 (uL/min) 1.35 (uL/min) 1.182	Enzymes Contact Surface Are Iris Ar Anterior Vitr	Image:

14

Compound Specific

Permeability in each eye tissue Systemic absorption rate from vascular eye tissues Melanin binding Protein binding Enzyme and transport parameters

Physiological Volume Contact Surface Area between

tissues/compartments

Flow Rates (tear flow, aqueous humor flows, etc...)

Melanin content

Relevant Mechanisms

Absorption & transport

- Simple Diffusion (transcellular)
- Carrier-mediated transport
- Convective flow

Metabolism

- Linear
- Saturable
- Melanin binding
 - Linear
 - Saturable

Ocular Dosage Forms

- Topical (delivered to the front of the eye)
 - Immediate-release (eyedrops; both liquid and suspension; ointment)
- Intravitreal
 - Immediate-release (injections; both liquid and suspension)
 - Controlled-release (implants)
- Other
 - Subconjunctival implants

Capabilities of the Program

- Determine the degree of productive and non-productive absorption and loss
- Determine the amount of drug cleared into systemic circulation from the eye
- Physiological parameters can be edited from their default values (to reflect specific conditions or disease states) or complete physiologies for other species can be created by user and saved as custom physiologies
- Integration with GastroPlus[®] features such as Parameter Sensitivity Analysis, Population Simulations, Pharmacodynamic Analysis, Drug-Drug Interaction, etc.
- Optimize ocular parameters against experimental data
- Simulate concentration-time profiles of the drug and plot along with experimental data for compartments/tissues of the body (including eye) and plasma
- Determine Cmax, Tmax and AUCs for all ocular compartments

Ocular Statistics

Ocular Compartmental Simulation Output for Model: v2-Convection

Comp Name	Cmax-Obs	Cmax-Calc	Tmax-Obs	Tmax-Calc	AUC-Obs (0-t)	AUC-Calc (0-t)	AUC-Obs (0-inf)	AUC-Calc (0-inf)
Pre-cornea	927.1	1000.0	0.017	0.0	472.3	151.4	226.8	151.2
Cornea	75.23	83.36	0.030	0.080	41.46	70.15	41.15	70
Conjunctiva	0.0	1.26E-4	0.0	3.000	0	3.21E-4	0.0	0.000321
Aqueous Humor	3.250	4.116	0.250	0.310	4.624	7.612	4.473	7.555
Sclera	9.290	9.119	0.080	0.360	11.43	22.51	10.44	22.35
Anterior Sclera	20.84	31.31	0.080	0.120	22.53	37.80	21.34	37.65
Posterior Sclera	3.515	8.250	0.080	0.450	5.86	20.77	4.989	20.61
Iris-Ciliary Body	9.490	6.997	0.030	0.310	8.343	12.94	8.018	12.84
Retina	0.0	7.977	0.0	0.500	0	20.18	0.0	20.01
Vitreous Humor	0.0	0.190	0.0	0.920	0	0.805	0.0	0.74
Anterior Vitreous Humor	0.0	1.764	0.0	0.880	0	6.589	0.0	6.35
Posterior Vitreous Humor	0.047	0.029	0.250	3.000	0.621	0.116	0.093	0.116
Choroid-RPE	0.0	8.054	0.0	0.450	0	20.30	0.0	20.14
	0.0	0.034	0.0	0.430	0	20.00	0.0	20.14

OK

Case Study: Fluorometholone

Background and Aims

- Background
 - Tobradex® 0.1% Dexamethasone
 - Tobradex ST® 0.05% Dexamethasone

Active ingredient	Strength (%)	logP	MW (g/mol)	Water solubility (mg/mL)	Solubilized (%)	Suspended (%)
Dexamethasone	0.1	1.93	392.5	0.089	8.9	91.1
	0.05	1.93	392.5	0.089	17.8	82.2

- ➔ Aqueous humor exposure is similar despite the strength differences. Same particle size (PS) but difference in viscosity (75 cps for Tobradex ST[®] and 1.5 cps for Tobradex[®])
- <u>Aims</u>
 - Verify an OCAT[™] model for fluorometholone suspension 0.1%
 - Design a new suspension 0.01% with the same aqueous humor
- 20 exposure

Modeling Strategy

Summary

22

SimulationsPlus SCIENCE + SOFTWARE = SUCCESS

Summary

New Formulation

Patton-Robinson-JPharmSci-1975

To learn More:

Protocol for evaluation of topical ophthalmic drug products in different compartments of fresh eye tissues in a rabbit model

Asho Application of Mechanistic Ocular Absorption Modeling and Simulation ^{Jiang} to Understand the Impact of Formulation Properties on Ophthalmic U.S. Bioavailability in Rabbits: a Case Study Using Dexamethasone Suspension

Fede

Maxim Elefthe Suresh Lei Zh

Max Ocular Physiologically Based Pharmacokinetic Modeling for Ointment Formulations

Maxime Le Merdy ¹ • Jessica Spires ¹ • Viera Lukacova ¹ • Ming-Liang Tan² • Andrew Babiskin² • Xiaoming Xu³ • Liang Zhao² • Michael B. Bolger¹

To learn More (bis):

The GastroPlus® Additional Dosage Routes Seminar Series Ocular with Maxime Le Merdy

https://www.youtube.com/watch?v=IoNeSIUN-4Q&t=2406s&ab_channel=SimulationsPlus%2CInc.

Pulmonary Compartmental Absorption & Transit model

Compartmentalization of the Lung (ICRP66)

- ET1 = Anterior nasal passage
- ET2 = Posterior nasal passage, oral cavity, larynx, pharynx etc.
- BB = Trachea and bronchi
- Bb = Bronchioles (up to terminal)
- AI = Respiratory bronchioles, alveolar duct, alveoli etc.

Processes Involved in Nasal-Pulmonary Absorption

These phenomena:

- are happening simultaneously
- are repeated in each of the compartments of the nasal-pulmonary model

SCIENCE + SOFTWARE = SUCCESS

Pulmonary Compartmental Absorption and Transit Model

Compound Specific and Physiological Parameters

🎏 Extra-thoracic		×
<u>D</u> atabase		
Compound Physiology	<u>E</u> nzymes	<u>I</u> ransporters
Permeability (cm/s) 1.063E-6 Metab CL (L/h) 0 Sys Abs Rate Cnst (1/s) 5.873E-3 Lymph Abs Rate Cnst (1/s) 5.787E-12 % Unbound in Mucus 100 % Unbound in Cell 100	% Extra-Thoracic Amount Lost Swallowed 0 Expectorated 0 Nothing is swallowed or expecting immediately after administration	Initially elled ion Set Comp Defaults
	<u>0</u> K	<u>C</u> ancel
🕵 Extra-thoracic		×
Database	~~~~~	~
Compound Physiology	<u>E</u> nzymes	<u>I</u> ransporters
Surface Area (sq cm)450Liquid (Mucus) Thickness (cm)1.5E-3Epithelial Thickness (cm)5.0E-3Swallowing Transit Time (h)0.24	Liquid (Mucus) Volume (mL) 0 Epithelial Volume (mL) 2 Tissue Volume (mL) 7	1.675 1.25 9.53
Block Mucociliary Transit out of this compartme	ent	Set Phys Defaults
	<u>o</u> k	<u>C</u> ancel

Compound Specific

- Permeability in each tissue
- Metabolic clearance
- Systemic absorption rate from nasal-pulmonary tissues
- Mucus/cell binding
- Enzymes & Transporters tabs

Physiological

- Surface Area
- Mucus Layer Thickness
- Epithelial Thickness
- Mucociliary Transit Time

Human physiology can be scaled based on Gender and Age

Distribution of Dose into Pulmonary Compartments

- The fractions $(f_{ET1} \text{ to } f_{AI})$ can be
 - Calculated (dependent, e.g., on particle radius) option "ICRP66"

Radius, shape factor, density
$$\square f_{ET1}$$
 to f_{AI}

Manually specified by the user (independent of radius) – option "User Defined"

Regional Deposition Calculation

Regional lung deposition can be predicted (from particle size distribution, standard deviation, etc. using the ICRP66 or Finlay deposition model) or specified manually by the user

Output (% deposited) that distributes the administered dose into different lung compartments

Size distribution and additional information for drug carrier (excipient) can be incorporated in calculation of regional deposition

Nasal-Pulmonary Dosage Forms

Dosage Form Name	Dosing Compartment	Dosing Form Type	Physical State	
PL: Soln	Distributed	Immediate	Liquid	
PL: Powder	Distributed	Immediate	Solid	
PL: IT Soln	Thoracic	Immediate	Liquid	
PL: IT Powder	Thoracic	Immediate	Solid	
PL: Nasal Soln	Nose	Immediate	Liquid	
PL: Nasal Powder	Nose	Immediate	Solid	
PL: Inf Soln	Distributed	Slow Infusion	Liquid	
PL: Inf Powder	Distributed	Slow Infusion	Solid	

Specific Nasal-Pulmonary Capabilities

- Evaluation of the independent contribution of pulmonary and gut absorption after inhaled administration
- Evaluation of formulation effects (dosage form, particle size, distribution, density, shape factor, presence of excipient, etc...)
- Additional mechanisms and functionality to be incorporated
 - Phagocytosis, lysosomal trapping
 - New deposition models and physiologies

Selected Pulmonary Example (1)

Figure 3. Simulated (lines) and experimental (points) Cp-time profiles of tobramycin after inhaled (nebulizer) administration in adults and children (average age about 4 years): A = 600 mg dose in adults [7], blue - prediction assuming the same deposition fractions as reported for TOBI nebulizer, green and red – prediction assuming 2.5-times lower and higher, respectively, deposition efficiency than reported for TOBI nebulizer; B – prediction for 300 mg dose in children [8] after scaling the respective deposition efficiencies from adults, blue – scaled adult deposition reported for TOBI nebulizer, green and red – scaled the low and high adult deposition efficiency, respectively.

Fitted pulmonary permeability against *in vivo* adult data and used to predict PK in children

Lukacova V, Poster presentation, Rosenon Meeting 2010, Stockholm, Sweden, Sept 9-11, 2010

Selected Pulmonary Example (2)

To learn More:

The GastroPlus® Additional Dosage Routes Seminar Series Pulmonary with John DiBella and Jim Mullin

https://www.youtube.com/watch?v=fnkbENLMGuY&ab_channel=SimulationsPlus%2CInc.

Pharmacodynamie

Entering the era of computationally driven drug development

Neha Maharao^a, Victor Antontsev^a, Matthew Wright^b and Jyotika Varshney^a

^aVeriSIM Life Inc., San Francisco, CA, USA; ^bDMPK, Genentech Inc., San Francisco, CA, USA

PK/PD

PK/PD: link pharmacokinetics and pharmacodynamics in order to establish a doseconcentration-response relationship and subsequently describe and predict the effecttime course resulting from a drug dose

PDPlus™ Module

Standard Jusko/Derendorf pharmacodynamic models:

• Direct

- Linear
- Log-linear
- Emax
- Sigmoid Emax

Indirect

- Indirect Link: Effect compartment
- Class I IV
- Cell killing
- Bacterial kill and growth (power & sigmoidal model)
- Precursor dependent (indirect models V VIII)

Direct Response Models

Linear

$$E = E_0 + S^*C$$

- Log linear
 - $E = E_0 + S^* log(C)$

= Maximum Effect/Inhibition

• E_{max}

- $E = E_0 + E_{max} * C / (EC_{50} + C)$ $E = E_0 - I_{max} * C / (IC_{50} + C) \text{ [inhibition]}$
- Sigmoid E_{max}

= Concentration

= Baseline Effect

$$E = E_0 + E_{max} * C^{Y} / (EC_{50}^{Y} + C^{Y})$$

$$E = E_0 - I_{max} * C^{Y} / (IC_{50}^{Y} + C^{Y}) \text{ [inhibition]}$$

= Effect

= Slope

= Hill parameter (describes the steepness of the concentration-effect relationship)

= Concentration at which 50% of the maximum effect/inhibition is observed

Ε

S

5+ SimulationsPlus SCIENCE+SOFTWARE=SUCCESS

43

ν

С

 E_0

 E_{max}/I_{max}

 EC_{50}/IC_{50}

Sigmoid E_{max} Model

Direct vs. Indirect

Louizos et al. J Pharm Pharm Sci. 2014; 17(1): 34–91

Indirect Models in PDPlus™

Indirect Link: Effect compartment: Sigmoid E_{max} model, but C_e instead of C_p Class I - inhibition of buildup: Drug inhibits transfer of drug into effect compartment Class II - inhibition of dissipation: Drug inhibits transfer of drug out of effect compartment Class III - stimulation of buildup: Drug stimulates transfer of drug into effect compartment Class IV – stimulation of dissipation: Drug stimulates transfer of drug out of effect compartment Cell killing – phase nonspecific: Effect of chemotherapeutic agents – drug causes mitotic arrest of cancer cells

Bacteria kill and growth: Drug causes the death of bacteria in the non-resistant subpopulation Class V - inhibition of buildup: Drug inhibits response production Class VI - inhibition of buildup: Drug stimulates response production Class VII - inhibition of buildup: Drug inhibits precursor production Class VIII - inhibition of buildup: Drug stimulates precursor production

Indirect Link - Class I-IV

Indirect Link Bacteria Killing and Growth Model

The model consists of two bacterial population: one susceptible and one pre-existing resistant

48 From Kristoffersson (Pharm Res. 2016)

Precursor-dependent Indirect Model

$$\frac{dR}{dt} = k_p \{1 \pm H_2(C_p)\} \times P - k_{\text{out}} \times R, \quad (12)$$

k₀: the zero-order rate constant for precursor production

 k_p : the first-order rate constant for production of the response variable

 k_{s}^{r} and k_{out} : first-order rate constants for loss of the precursor or response

H₁: the inhibition or stimulation of precursor production

H₂: the inhibition or stimulation of response production

Stimulation or inhibition of k_p is more commonly observed than alterations in the production of precursor.

49 From Felmlee (Methods Mol Biol. 2012)

Building PK/PD Models

Thank you!

For More Information:

Visit our website at: www.simulations-plus.com

Email: maxime@simulations-plus.com

Thank you!

