
OBJECTIVE METHODS

RESULTS

CONCLUSION REFERENCES

Accelerating a QSP Model of Nonalcoholic Steatohepatitis (NASH)
Using the Julia Language
Matthew McDaniel1, Grant Genereaux2, Francisco Huizar1, Corey Berry1, Scott Q. Siler1

1Quantitative Systems Pharmacology Solutions, Simulations Plus, Inc., Research Triangle Park, NC
2Bristol Myers Squibb, Princeton, NJ (current affiliation; was an employee of Simulations Plus at the time of this work)
Contact: matt.mcdaniel@simulations-plus.com

NAFLDsym® is a quantitative systems pharmacology (QSP) platform

that simulates progression and treatment of nonalcoholic fatty liver

disease (NAFLD) and nonalcoholic steatohepatitis (NASH)1. The current

NAFLDsym version (v2A) was designed in MATLAB, a choice motivated

by MATLAB’s ubiquity in numerical computing and its support for

graphical user interface (GUI) development. MATLAB also enables code

obfuscation via “p-files”2, enabling protection of proprietary code

while maintaining public-facing QSP model equations that users can

modify for simulation. However, MATLAB apps incur significant time

overhead due to runtime compilation. This cost can be problematic

when running large population simulations (>1000 patients) at the

longer time scales of NASH treatment. Our objective, therefore, was to

make NAFLDsym more computationally efficient.

The efficiency of the NAFLDsym QSP platform has been increased by migrating the model from

MATLAB to a Julia/C++/Qt hybrid. Further improvements in efficiency should be possible with

ongoing optimization efforts. For instance, substantial progress has been made in resolving

instances of type instability, which prevent Julia’s compiler from inferring variable types and lead

to non-performant code. Reducing the execution time of large-scale simulations from days to

hours will streamline NASH treatment simulations, SimPops generation, and additional model

development.

1.Siler, S. Q. Pharm Res. 2022 Aug;39(8):1789-1802.

2.Pcode. https://www.mathworks.com/help/matlab/ref/pcode.html

3.The Julia Language. https://docs.julialang.org/en/v1/

4.SciML: Open Source Software for Scientific Machine Learning. https://sciml.ai/

5.PackageCompiler. https://julialang.github.io/PackageCompiler.jl/dev/

The NAFLDsym GUI functionality was first migrated into a separate C++/Qt application. Doing so produced both a faster

and a more visually appealing interface. All other engineering and model-related code was then converted to Julia.

Julia was selected because it is a dynamic language that was designed for highly performant numerical computing3. This

emphasis on performance is particularly evident in the Julia Scientific and Machine Learning (SciML)4 kit, which

maintains a library of highly configurable differential equation solvers and optimization tools. Furthermore, Julia code

can be compiled to a binary executable via the Package Compiler library5. Using this library enabled the continued

separation of the public QSP model from the private proprietary code with the added benefit of minimizing runtime

compilation. Taken together, the C++/Qt frontend and Julia backend comprise the new NAFLDsym v2B.

Three simulation configurations were run to compare the performance of NAFLDsym v2A and v2B: All NAFLDsym

SimPops® patients (n = 1673) for 24 hours, NASH SimCohorts™ of 100 patients for 1 year, and NASH SimCohorts of 50

patients for 3 years; simulated patients were untreated. All simulations were run on a Windows 10 system with 20 cores

(Intel Xeon 2.4 GHz) and 32 GB of RAM.

NAFLDsym Overview Diagram and GUI

Representative Outputs from NAFLDsym v2A and NAFLDsym v2B for the Three Simulation Configurations

NAFLDsym Version 2B divides visual and non-visual coding elements
between Qt (C++) and Julia, respectively. All proprietary engineering
code written in Julia is compiled to a binary executable using the
Package Compiler library, which is callable from the C++ interface.
Public model elements (code, parameters, etc.) are copied to the
project folder and can be edited by users. These public files are
processed by the compiled application at runtime.

NAFLDsym Version 2B Design Strategy Comparison of v2A and v2B Simulation Times

The execution times of the three configurations in NAFLDsym v2A

(MATLAB) were 2.4 hours (n = 1673, 24hrs), 28.7 hours (n=100, 1yr), and

42.5 hours (n=50, 3yrs). The respective times for NAFLDsym v2B (Julia)

were 0.6 hours, 4.9 hours, and 5.9 hours. Thus, NAFLDsym v2B exhibits a

four-fold to seven-fold improvement in speed over NAFLDsym v2A.

Outputs from NAFLDsym v2A (top row) and v2B (bottom row) are shown for the n=1673, 24 hours simulation (left), the n=100, 52 weeks simulation (middle), and the n=50, 3 years simulation (right). Version 2B results are
consistent with Version 2A with respect to both short-term dynamics (e.g., plasma FFA, average liver ATP) and long-term dynamics (e.g., plasma ALT, total liver collagen, NAFLD Activity Score, liver fat). Furthermore, as with
Version 2A, Version 2B simulations are stable for up to three years of simulated time. Version v2B plots were generated using a custom Qt/C++ plotting tool that is included with the release version.

mailto:matt.mcdaniel@simulations-plus.com
https://www.mathworks.com/help/matlab/ref/pcode.html
https://docs.julialang.org/en/v1/
https://sciml.ai/
https://julialang.github.io/PackageCompiler.jl/dev/

	Slide 1

