Delivering on the promise of AI-driven drug discovery with ADMET Predictor[®] 10 Background and application examples

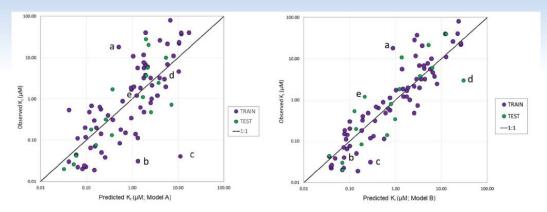
Marvin Waldman Sr. Research Fellow 30-Sep-2020

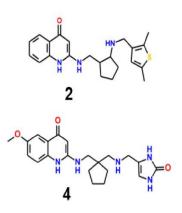
Motivation

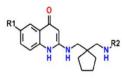
 In-house project to develop novel anti-malarial compounds as proof of concept to use in-silico models to design compounds

Journal of Computer-Aided Molecular Design https://doi.org/10.1007/s10822-020-00333-x

Design and tests of prospective property predictions for novel antimalarial 2-aminopropylaminoquinolones


Robert D. Clark¹ · Denise N. Morris² · Gary Chinigo^{3,6} · Michael S. Lawless¹ · Jacques Prudhomme⁴ · Karine G. Le Roch⁴ · Maria José Lafuente⁵ · Santiago Ferrer⁵ · Francisco Javier Gamo⁵ · Robert Gadwood³ · Walter S. Woltosz¹


Received: 9 April 2020 / Accepted: 21 July 2020 © The Author(s) 2020



Compound Design Protocol

Activity Models

Simplified scaffold

Analog Generation

Compound Design Protocol

Compound	8	9	Compound	Pred. PfDHODH	XC ₅₀ (µ	M) ^{a,b}	Dosing Regimen: 100 mg,
Name	SLP0005	SLP0003		K _i (μM)	3d7(-)	Dd2(+)	followed by 50 mg at 6, 24, and 48 hours
S+Sw (µg/mL) obsd. solubility	1.8 33	0.32 0.76	12a 12b	0.049	10.0	46 6.4	
S+logP obsd. logP	4.7 4.2	5.05 4.4	120 11a 11c	0.051 0.023 0.037	1.61 0.55 0.37	0.4 2.3 1.78	(Tp.15- Iw/Br)
S+pK _{a1} obsd. pK _{a1}	5.24 4.95	5.24 4.80	8	0.037	0.30 0.106	1.47 0.21	5 1 1 1 1 1 1 1 1
S+pK _{a2} obsd. pK _{a2}	8.01 8.33	7.63 7.36	11b CID 44534046 ^c	0.038	0.037 0.89	0.24 4.6	Effective Conc=10*K;=0.250 μM (0.110 μg/mL) Target concentration = 0.110 μg/mL)
S+logD _{6.8} obsd. logD _{6.8}	3.44 2.68	4.46 3.76	CID 44535189°	0.077	0.85	8.6	Compound 9

Predict/Measure Properties

Conclusion: "It seems likely that further iterations and in vivo characterization would be productive."

Can this be automated?

Simulation Time (h)

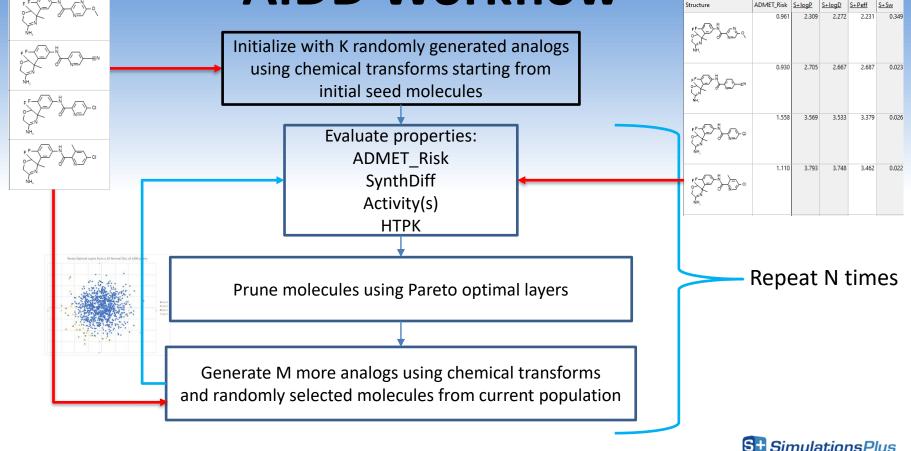
70

Background

- History of Computer-Based ("De Novo") Drug Design
 - Early 1990's
 - Structure (Receptor) Based
 - Ludi, MCSS/Hook, Sprout
 - Late 1990's Rule of 5, ADMET, Drug Design is multi-objective
 - "It ain't just activity anymore"
 - Early to late 2000's
 - Multi-objective ligand and structure-based design
 - Typically multi-objective "combined" into a single function
 - EA-Inventor, Muse, in-house Pharma programs
 - In the last decade
 - Pareto-based optimization
 - Deep Learning Generative algorithms

Generating Virtual Molecules

- Elementary "Transforms"
 - Modify molecules with small changes or fragment additions/deletions
 - Change/Add single atom or bond
 - Add common fragments
 - Carboxylic acid, sulfonamide, phenyl, etc.
 - Synthetic Feasibility?
 - Filter molecules based on structural alerts, e.g. hemiacetal, peroxide, etc.
 - Library of known synthetic reactions and building blocks
 - Chemical Diversity/Novelty?
 - SMIRKS-based
 - Deep Learning
 - Generative algorithms based on SMILES or graph representations


Molecule Selection/Scoring Approaches

- Multi-objective Criteria
 - Weighted Sum or "Combining" Function
 - Pareto optimal
 - Criteria
 - Activity/Docking Scoring
 - ADMET liabilities
 - Similarity to known active/lead
 - Synthetic Accessibility
 - Drug-likeness
 - Chemical Filters

AIDD Workflow

Structure

SCIENCE + SOFTWARE = SUCCESS

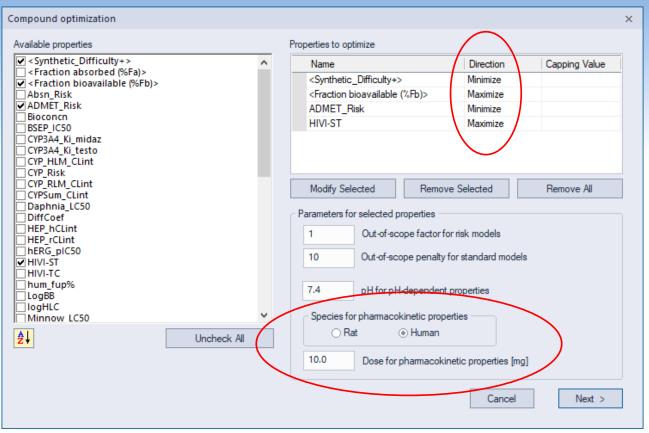
Generating Analogs

- Uses a library of chemically "intelligent" SMIRKS transforms
 - Example: Non-fluorine_to_fluorine
 - Simple version: [!#9:1]>>[#9:1]
 - Problem (Need to avoid)

Highly reactive acid halide

- Improved SMIRKS: [!#9;D1_S\$(*~[#6])!\$(*C=[O,N,S]):1]>>[#9:1]
- Currently ~150 transforms

 CHANGE_FUNCTIONAL_GROUP . CHANGE CHAIN LENGTH CREATE_RING E BREAK RING CHANGE RING SIZE CHANGE_RING_TOPOLOGY SHIFT RING SUBSTITUENTS CHANGE BOND ORDER Aromatic to single bond Aromatize 5-membered ring Aromatize 6-membered ring De-aromatize 5-membered ring De-aromatize 6-membered ring Double or triple to single bond Double to triple bond Single to double bond Single_to_triple_bond Triple to double bond CHANGE ATOM TYPE Non-bromine to bromine Non-carbon to carbon Non-chlorine to chlorine Non-fluorine to fluorine Non-iodine to iodine Non-nitrogen to nitrogen Non-oxygen_to_oxygen Non-sulfur to sulfur ADD FUNCTIONAL GROUP ADD FUSED RING ⊡ DELETE FUNCTIONAL GROUP

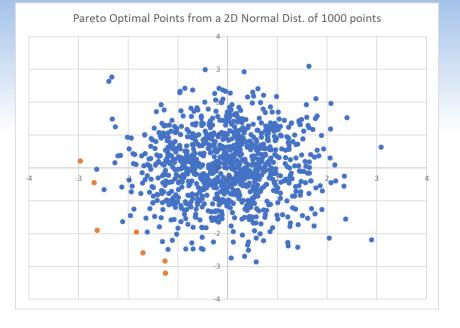

Transforms CHANGE FUNCTIONAL GROUP 2-Pyridone_to_Phenyl 4-Hydroxypyridine to pyridone ✓ 4-Pyridone_to_Phenyl Acid_to_aliph_ring Acid_to_arom_ring Acid_to_tetrazole Add_double_bond_oxygen Amide arom insertion Amide reversal Amide_to_hydroxy Amide to hydroxy(2) Amide to olefin Arom_ring_to_ester(1) Arom_ring_to_ester(2) Arom_ring_to_propyl CF3_to_methyl Carbonyl_to_sulfonyl Catechol to imidazole Catechol_to_pyridone Charged nitrogen to carbon Ester_to_amine Ester_to_arom_ring Ester_to_retroamide Ester_to_sulfonamide Ether_to_ethylene Ethylene_to_ether Het to sulfone Hydroxy_to_amide

ADD_FUNCTIONAL_GROUP Add_1-imidazole Add_1-tetrazole Add 1-thiazole Add 2-imidazole Add 2-tetrazole Add 2-thiazole Add_3-piperideine Add 3-tetrazole Add 3-thiazole Add CF3 Add amide Add amine Add bromo Add carboxylic acid Add chloro Add cyano Add cyclohexyl Add cyclopentanone Add fluro Add hydroxyl Add iodo Add meta furan Add meta pyrrole Add meta thiophene Add_methyl Add methyl imide Add n sulfonamide Add nitro Add_ortho_furan

SCIENCE + SOFTWARE = SUCCESS

~50 Built-in models %Fa, %Fb Synthetic Difficulty+ User Models

Properties



Compromise Solution

- Multi-objective, but combine related objectives (e.g. ADMET) into one : ADMET_Risk[™]
- Typical/Recommended use: 4-5 objectives
 - ADMET_Risk
 - Synthetic Difficulty
 - 1-2 activity models (e.g., activity and selectivity)
 - Good PK (e.g, bioavailability)

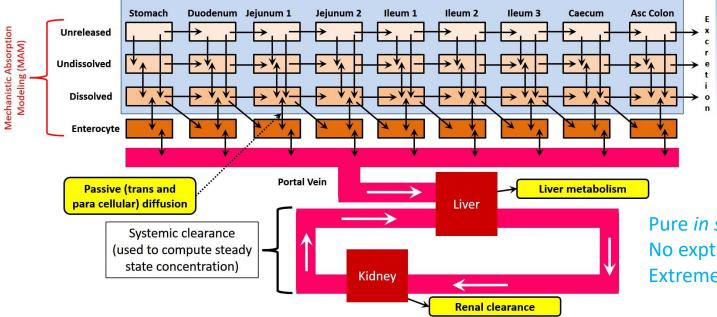
Pareto Selection

• Pareto Results

- 1000 normally distributed points
 - 2-dim. : 7 Pareto optimal points
 - 5-dim. : ~100 Pareto optimal points

Too Many objectives leads to too many molecules!

Most of them are good in just one or a few properties.

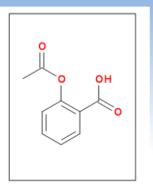

ADMET Risk[™]

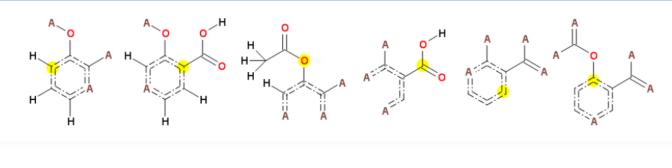
Identifier	Weight	Rule logic	
Size	1.0	MWt > 450{500} OR N_Atoms > 30{35} OR MolVol > 470{520} OR N_Bonds > 35{40}	
RotB	1.0	N_FrRotB > 8{10}	
HBD	1.0	HBDH > 3{5} AND HBDch > 1.5{2.0}	
HBA	1.0	HBA > 7{10} AND HBAch < -6.0{-5.0}	
ch	1.0	NPA_ABSQ > 19{21} OR T_PSA > 120{140}	🚽 📂 Absorption
Kow	1.0	S+logP > 4.5{5.0} OR S+logD > 3.5{4.0} OR MlogP > 3.5{4.0}	
Peff	1.0	S+Peff < 0.40{0.60} OR S+MDCK < 10{25}	
Sw	1.0	S+Sw < 0.005{0.010}	
fu	1.0	hum_fup% < 4{6}	
Vd	1.0	Vd > 4{5}	Distribution
hERG	1.0	hERG_Filter = Yes AND hERG_pIC50 > 5.5{6.0}	
rat	1.0	Rat_Acute < 200{300}	
Xr	1.0	Rat_TD50 < 2.5{5.0}	
Xm	1.0	Mouse_TD50 < 25{40}	— Toxicity
HEPX	1.0	Ser_AST = Elevated AND Ser_ALT = Elevated AND Ser_LDH = Elevated	
MUT	1.0	MUT_Risk > 1	
1A2	1.0	(CYP1A2_CLint > 20{40} AND CYP1A2_Substr = Yes)	
2C9	1.0	(CYP2C9_CLint > 10{20} AND CYP2C9_Substr = Yes)	
2C19	1.0	(CYP2C19_CLint > 10{20} AND CYP2C19_Substr = Yes)	– Metabolism
2D6	1.0	(CYP2D6_CLint > 10{20} AND CYP2D6_Substr = Yes)	
3A4	1.0	(CYP3A4_CLint > 20{50} AND CYP3A4_HLM_CLint > 30{75} AND CYP3A4_Substr = Yes)	
CL	1.0	CYP_HLM_CLint > 90{150} OR HEP_hCLint > 60{90}	S+ SimulationsPlus

SCIENCE + SOFTWARE = SUCCESS

PBPK Simulation: Methodology

ACAT[™] Model^{*} + Compartmental Model

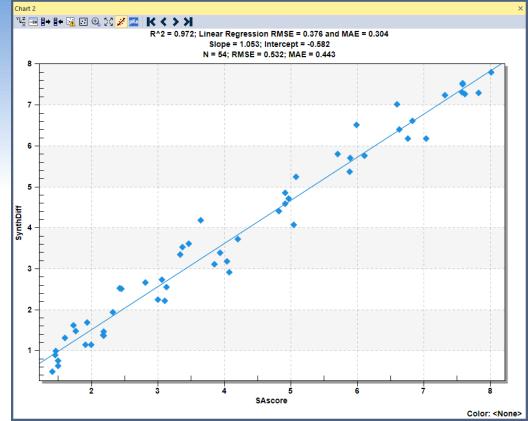



Pure *in silico* simulation No exptl properties required Extremely rapid, multi-threaded

* Advanced Compartmental Absorption and Transit Model

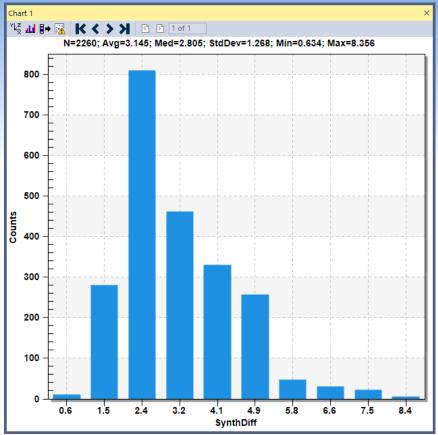
Synthetic Accessibility/Difficulty

Score = fragmentScore - complexityPenalty


Fragment frequencies	Heavy Atoms Macrocycles Stereocenters
	Spiro centers
	Bridges

	SA Ertl	Synth Diff
Training	~1 million	~47 million
Outer Layer	Any	aromatic vs. aliphatic
Complexity	Same	Same
Range	1-10	0-10

Ertl and Shuffenhauer, J Cheminf, 2009, doi:10.1186/1758-2946-1-8


Comparison: SAScore vs. SythDiff

Ertl and Shuffenhauer, J Cheminf, 2009, doi:10.1186/1758-2946-1-8 Li et al., J Cheminf, 2018, doi:10.1186/s13321-018-0287-6

Distribution of SynthDiff Scores

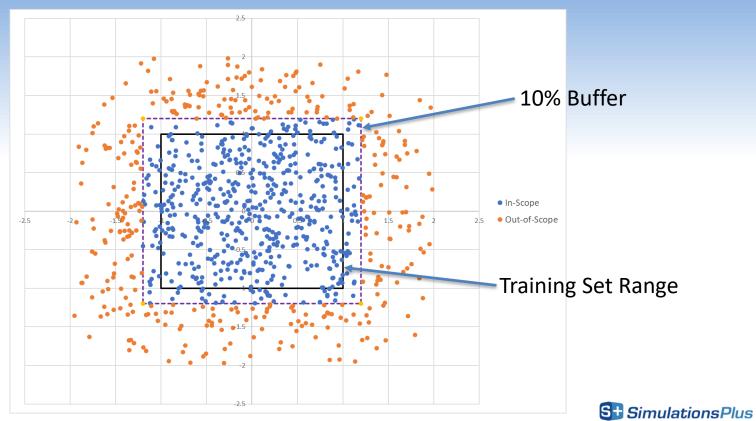
WDI Focused Set of 2260 compounds

SynthDiff+

- SynthDiff was designed to "score" real molecules
- Performance on virtual molecules sometimes too "optimistic"
 - Add additional penalties based on drug-likeness filters
 - Brenk et al., ChemMedChem, 3, 435 (2008)
 - Rishton, Drug Disc. Today, 2, 382 (1997)
 - Maximum penalty of 4
 - Augmented version preferred over adding another Pareto objective

Early Results

	Structure	OBJ_HIVI-ST	ADMET_Risk	SynthDiff	
1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12.799	3.000	4.256	
2	HO HO HO HO HO	6.525	3.956	2.313	
3	HO TO OH HO TO OH HO TO OH HO TO OH	12.248	3.500	4.181	
4		12.163	6.000	4.132	
5		11.952	4.000	4.082	
6	$\begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} \\ & & \\ \\ & & \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \\ \end{array} $	11.051	1.694	3.674	



Out-of-Scope Predictions

	Structure	OBJ_HIVI-ST	ADMET_Risk	SynthDiff	<u>HIVI-ST</u>
1		12.799	3.000	4.256	<u>12.799</u>
2	HO TO THE HOLD OF	6.525	3.956	2.313	<u>6.525</u>
3		12.248	3.500	4.181	<u>12.248</u>
4		12.163	6.000	4.132	<u>12.163</u>
5		11.952	4.000	4.082	<u>11.952</u>
6	$\overset{(i)}{\overset{(i)}}{\overset{(i)}}{\overset{(i)}{\overset{(i)}{\overset{(i)}}{\overset{(i)}{(i$	11.051	1.694	3.674	<u>11.051</u>

Applicability Domain

SCIENCE + SOFTWARE = SUCCESS

After Applying "Penalties"

	Structure	OBJ_HIVI-ST	ADMET_Risk	SynthDiff	<u>HIVI-ST</u>	HIVI-ST+	ADMET_Risk+	SynthDiff+	
1	$\left(\begin{array}{c} 0 = \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0 = 0 \\ 0 = \frac{1}{2}, \frac{1}{2}$	12.799	3.000	4.256	<u>12.799</u>	2.799	14.000	8.253	
2	HO HO HO HO HO	6.525	3.956	2.313	<u>6.525</u>	-3.475	11.956	6.312	
3	HO CHO CH	12.248	3.500	4.181	<u>12.248</u>	2.248	13.500	7.897	
4		12.163	6.000	4.132	<u>12.163</u>	2.163	15.000	7.848	
5		11.952	4.000	4.082	<u>11.952</u>	1.952	15.000	6.848	
6	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \\ \end{array}\\ \end{array} \\ \begin{array}{c} \\ \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array}\\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ $	11.051	1.694	3.674	<u>11.051</u>	1.051	13.404	7.674	

Flip Side of the Coin: Capping Values

	Structure	OBJ_HIVI-ST	ADMET_Risk	SynthDiff
1		3.645	1.000	0.000
2		3.676	1.000	0.000
3		3.846	1.000	0.000
4	——он	3.506	0.431	0.131
5		3.173	1.000	0.243
6		3.250	1.000	0.384

<synthetic_difficulty+> ADMET_Risk</synthetic_difficulty+>	Minimize	2.5
ADMET_Risk		2.0
APPER _ Her	Minimize	
<fraction (%fb)="" bioavailable=""></fraction>	Maximize	90

Trivially Simple Molecules: Very easy to make Very good in one objective

Assigning a capping value tends to filter out such molecules.

The capping value is assigned as the result when the actual result is "better", because this value is "good enough". Structure Structure Plus

SCIENCE + SOFTWARE = SUCCESS

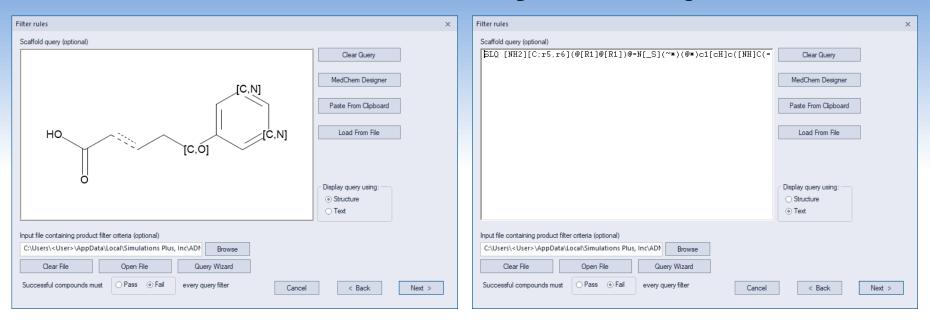
Applying Capping Values: Example

		Structure	OBJ_HIVI-ST	ADMET_Risk	SynthDiffCap		Structure	OBJ_HIVI-ST	ADMET_Risk	SynthDiff+	SynthDiffCap
	1		3.645	1.000	2.500	1	HO	4.524	0.000	1.880	2.500
	2		3.676	1.000	2.500	2	OH OH	4.228	0.000	1.907	2.500
	3		3.846	1.000	2.500	3	HO	4.701	0.000	2.356	2.500
4	4	——он	3.506	0.431	2.500		Molecules	s on right	"domina	ite" mol	ecules
ł	5		3.173	1.000	2.500		on left aft	er applyi	ng cappir	ng to Syr	nthDiff
(6		3.250	1.000	2.500	_					

Restricting Chemical Space

Scaffold query (optional) Clear Query MedChem Designer Paste From Clipboard Load From File
MedChem Designer Paste From Clipboard
Paste From Clipboard
Load From File
Display query using: Structure • Text
Input file containing product filter criteria (optional)
C:\Users\ <user>\AppData\Local\Simulations Plus, Inc\ADI Browse</user>
Clear File Open File Query Wizard
Successful compounds must Pass Fail every query filter Cancel Kext >

User Definable Scaffold


- Drawn using MedChem Designer
- Specified via SMARTS

Filtering Criteria

- Default file supplied
- Can be modified/replaced or omitted
- SMARTS patterns or more general queries SLQ [#6]C(=O)N U >= 4 SCORE 1 NPQ AtomCount >= 66 SCORE 1

Scaffold Query Examples

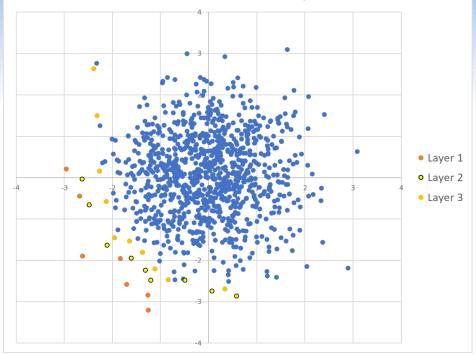
Structure-Based scaffold

SMARTS-Based scaffold


Run Parameters

Run parameters	×	
Input file containing transform rules C:\Users\Marv\AppData\Local\Simulations Plus, Inc\ADN Browse View Transforms Enable or disable individual transform rules		
100 Number of optimization generations 500 Number of candidate molecules per generation 1000 Size of initial population	777 Random seed 10 Intermediate file frequency (%)	
1000 Size of initial population 500 Minimum size of population after each pruning cycle	✓ Use multithreading for product generation	– Minimum Size?
Folder for result files C:\Users\Marv\AppData\Local\Simulations Plus, Inc\ADM Browse Write input compound(s) to the output		
☑ Display results in new window	Cancel < Back Run	
		5+

Pareto Selection



- Pareto Results
 - 1000 normally distributed points
 - 2-dim. : 7 Pareto optimal points

Pareto Selection – Multiple Layers

Pareto Selection - First 3 Layers

If initial Pareto-based selection results in too few molecules, repeat the selection using the remaining candidate molecules => Pareto Layers.

Enforced after running 50% of generations. Avoids "bad" molecules entering the population too early.

Summary/Key Points

- Highly automated customizable protocol commercially available
- ~150 chemically intelligent transforms
 - Customizable, user-controllable
- Property objectives
 - ~50 built-in property models available including ADMET Risk to combine them
 - HTPK simulations
 - User models from ADMET Modeler™
- Many options for controlling/limiting chemical space to avoid "chemical nonsense"
 - User-specified scaffold definition
 - Chemical filters built-in or user-specified
 - Out-of-scope penalties
 - Augmented synthetic difficulty
- Performance!
 - Up to ~10 million molecules evaluated per 24 hours on i7-8 core laptop running 7-8 threads

Evaluation

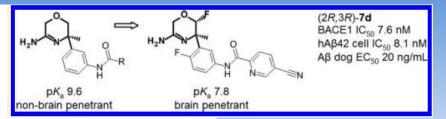
St SimulationsPlus SCIENCE+SOFTWARE-SUCCESS

Sept. 22, 2020 12:30 UTC

Simulations Plus Partners with Large Pharmaceutical Company to Validate Al-Driven Drug Design Capabilities in ADMET Predictor®

New AIDD Module applied to active therapeutic program to provide lead optimization support

LANCASTER, Calif.--(BUSINESS WIRE)-- Simulations Plus, Inc. (Nasdaq: SLP), the leading provider of modeling and simulation solutions for the pharmaceutical, biotechnology, chemicals, and consumer goods industries, today announced that it entered into a collaborative research agreement with a large pharmaceutical company to evaluate the new AIDD Module in the recently launched version of ADMET Predictor[®].



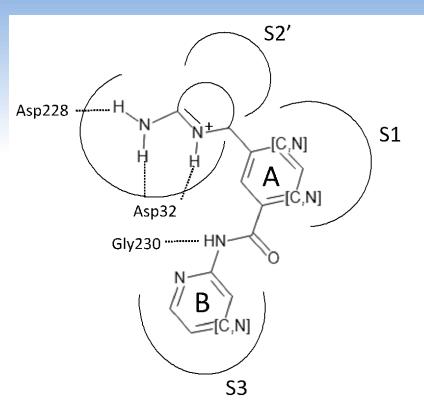
Working Example/Demo

- Design BACE1 inhibitors starting from a known active "seed"
 - BACE1 inhibition has been investigated as a potential target for treating Alzheimer's disease
- Use activity model based on 370 known BACE1 inhibitors
- Augment ADMET Risk with an additional Risk model blood-brain barrier penetration
- Specify scaffold and filtering criteria based on literature "pharmacophore"
- Illustrate scaffold hopping to find alternative scaffolds and compounds that were previously synthesized/tested

Journal of Medicinal Chemistry

1,4-Oxazine β -Secretase 1 (BACE1) Inhibitors: From Hit Generation to Orally Bioavailable Brain Penetrant Leads

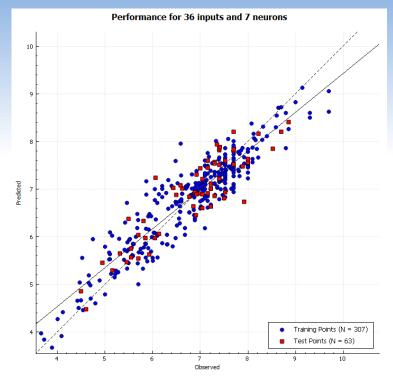
Frederik J. R. Rombouts,^{*,†} Gary Tresadern,[#] Oscar Delgado,[‡] Carolina Martínez-Lamenca,[†] Michiel Van Gool,[‡] Aránzazu García-Molina,[‡] Sergio A. Alonso de Diego,[‡] Daniel Oehlrich,[†] Hana Prokopcova,[†] José Manuel Alonso,[#] Nigel Austin,^{||} Herman Borghys,^{||} Sven Van Brandt,[†] Michel Surkyn,[†] Michel De Cleyn,[†] Ann Vos,^{||} Richard Alexander,[⊥] Gregor Macdonald,[†] Dieder Moechars,[§] Harrie Gijsen,[†] and Andrés A. Trabanco^{*,‡}


[†]Neuroscience Medicinal Chemistry, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium

[‡]Neuroscience Medicinal Chemistry, Janssen Research & Development, Janssen–Cilag SA, C/Jarama 75A, 45007 Toledo, Spain
 [§]Neuroscience Biology, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
 ^{II}Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
 ^LBiologics Research, Janssen Research & Development, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
 [#]Discovery Sciences, Janssen Research & Development, Janssen–Cilag SA, C/Jarama 75A, 45007 Toledo, Spain

DOI: 10.1021/acs.jmedchem.5b01101 J. Med. Chem. 2015, 58, 8216-8235

BACE1 Pharmacophore/Scaffold



Customized Risk Rule for BBB

Identifier	Weight	Rule logic
BBB	1.0	BBB_Filter = Low OR LogBB < -2{-1}
Pgp	1.0	Pgp_Substr = Yes
Fcat	1.0	FCation > 0.5{0.975}

BACE1 Activity Model

ALL: Slope=0.816 Intercept=1.259 QSqd=0.851 RMSE=0.418 MAE=0.326 RMSU=0.424 TRAIN: Slope=0.817 Intercept=1.250 QSqd=0.857 RMSE=0.418 MAE=0.324 RMSU=0.423 TEST: Slope=0.812 Intercept=1.322 QSqd=0.812 RMSE=0.420 MAE=0.338 RMSU=0.430

Acknowledgments

David Miller Robert D. Clark Michael Lawless

For more information, visit our website at: <u>www.simulations-plus.com</u>

