

Clofazimine pK_a Determination: the **Underestimated Yet Significant Influence of** Molecular Aggregation

Part 4, November 14, 2023

Tatjana Ž. Verbić

tatjanad@chem.bg.ac.rs

UNIVERSITY OF BELGRADE

FACULTY OF CHEMISTRY

Clofazimine

Practically insoluble antibiotic and anti-inflammatory drug, first synthesized in 1957.

Active against Mycobacterium leprae, clinically used to treat leprosy (Hansen's disease).

Much interest in repurposing **clofazimine (CFZ)** for the treatment of tuberculosis; globally, there are approximately 500,000 new tubercular cases every year.

The interest in CFZ has further increased since recently published data show that it possesses **inhibitory activity against several coronaviruses** and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of *in vitro* systems.

H₃C

Yuan, S.; Yin, X.; Meng, X.; et al. Nature 2021, 593, 418-423

Although CFZ has been known since 1957 and used therapeutically since 1986, its pK_a value was not confidently known. Previously reported measured (Table 1) and predicted (Table 2) pK_a values span 3 orders of magnitude.

рK _а	SD	t (°C)	I (M)	Method
6.08	0.002	25	-	Solubility-pH a
8.35	0.09	-	-	—
8.37	-	-	-	Potentiometric
8.51	-	37	-	Spectrophotometric
9.11	-	25	0.025	CE/MS

	рК _а	Software	Version
	5.48	ChemAxon MarvinSketch	5.3.7
Table 2. Calculated	6.24	ACD/Labs	3.0
pK _a values of CFZ	8.70	ADME Boxes (ACD/Labs)	4.9
	9.29	ChemAxon MarvinSketch	5.12.0
	9.07	ADMET Predictor	10.4

$20 \ \mu M \ \text{CFZ}$ in $10 \ \text{mM}$ HEPES

Pure aqueous media

Albert and Serjeant: $pK_a \sim 6.5$

20% (volume) MeOH

Albert and Serjeant: $pK_a \sim 7.2$

40% (volume) MeOH

^{\odot}Albert and Serjeant: pK_a ~8.5

60% (volume) MeOH

Albert and Serjeant: $pK_a \sim 9.1$

CFZ is a base: $BH^+ + H_2O \rightleftharpoons B + H_3O^+$

pK_a Value of a base should decrease (!!!) as dielectric constant decreases (% MeOH increases).

So, what did we see in spectra? (except nice color change)

Potentiometric titrations (12): 0.2-0.9 mM CFZ in 46-75 wt% MeOH

What if reverse cosolvent pK_a dependence observed by UV/Vis spectrophotometry is an **indicator of the presence of CFZ dimers** in aqueous solutions?

Calculated UV/Vis spectra

54.2 wt%	бМеОН	34.5 wt%	МеОН	16.5 wt% MeOH	
Log K	$\mathbf{p}_{\mathbf{s}}\mathbf{K}_{\mathbf{a}}$	log K	p _s K _a	log K	p _s K _a
5.54 ±0.30	9.51 ± 0.17	5.02 ± 1.54	8.67 ± 0.38	4.04 ± 1.54	7.91 ± 0.83

 $p_s K_a$ and log K of CFZ in MeOH–water co-solvent media (weight MeOH %) as determined by UV/Vis titration and PCA-ALS (25±1°C, I = 0.0 M)^{*}.

DFT dimerization calculations

Optimized geometries of B₂ dimers using H₂O (B_{2W}, left) and MeOH (B_{2M}, right) as solvents

NCI plots calculated for geometries of B_2 dimers optimized using H_2O (B_{2W}) and MeOH (B_{2M}) as solvents. Green areas correspond to the attractive non-covalent contacts, while brown/red areas correspond to the repulsive interactions.

molecular pharmaceutics

pubs.acs.org/molecularpharmaceutics

Article

Clofazimine pK_a Determination by Potentiometry and Spectrophotometry: Reverse Cosolvent Dependence as an Indicator of the Presence of Dimers in Aqueous Solutions

Tatjana Ž. Verbić,* Kin Y. Tam, Dušan Ž. Veljković, Abu T. M. Serajuddin, and Alex Avdeef*

Thank you all for the attention!