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Predicting mammalian metabolism
and toxicity of pesticides in silico
Robert D Clark*

Abstract

Pesticides must be effective to be commercially viable but they must also be reasonably safe for those who manufacture them,
apply them, or consume the food they are used to produce. Animal testing is key to ensuring safety, but it comes late in the
agrochemical development process, is expensive, and requires relatively large amounts of material. Surrogate assays used as in
vitro models require less material and shift identification of potential mammalian toxicity back to earlier stages in development.
Modern in silico methods are cost-effective complements to such in vitro models that make it possible to predict mammalian
metabolism, toxicity and exposure for a pesticide, crop residue or other metabolite before it has been synthesized. Their broader
use could substantially reduce the amount of time and effort wasted in pesticide development. This contribution reviews the
kind of in silico models that are currently available for vetting ideas about what to synthesize and how to focus development
efforts; the limitations of those models; and the practical considerations that have slowed development in the area. Detailed
discussions are provided of how bacterial mutagenicity, human cytochrome P450 (CYP) metabolism, and bioavailability in
humans and rats can be predicted.
© 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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1 INTRODUCTION
Anticipating mammalian toxicity of agrochemical pesticides or
their metabolites is a key part of agrochemical development.
Environmental problems can be identified fairly readily by tests
on invertebrates and fish. Testing new candidate compounds in
humans and large mammals is generally unethical and rarely prac-
tical early in development, however, so rodents are used instead.
Humanitarian and cost concerns have combined to drive testing
away from animal testing and towards greater reliance on in vitro
assays. These serve as useful models of the relevant in vivo end-
points, but they can be quite far removed from what they are
intended to predict. Moreover, the more definitive in vitro tests
often require a substantial amount of pure material, which can be
especially challenging when it comes to metabolites. An alterna-
tive approach is to use knowledge of molecular structure–activity
relationships (SARs) gleaned from past assay results to build in
silico models that can predict metabolism and toxicity of a com-
pound even before it, its metabolites or its crop residues have been
synthesized.

Such quantitative SAR (QSAR) models can be used to guide
on-target pharmaceutical optimization and to minimize unde-
sirable off-target activities.1 In the case of pesticide develop-
ment, mammalian toxicity – or lack thereof as a consequence of
metabolic inactivation – is a key off-target activity that needs to
be considered. The possibility of human toxicity is certainly a con-
cern. As a practical matter, however, evidence of toxicity in other
species – e.g., rodents or livestock – is just as capable of derailing

development, making it almost as important to be able to predict
the likely results of animal testing. Doing so requires reliable pre-
diction of whether the active ingredient itself is likely to be toxic,
how it is likely to be metabolized, and whether the metabolites
produced are likely to be toxic or innocuous. In fact, in silico model
predictions provide an important way to reduce the need for ani-
mal testing and to make sure it is done efficiently when it is needed.
They can also complement both in vitro and in vivo tests by identi-
fying instances where those results are misleading or incorrect.

Predictive in silico models could be built to address many differ-
ent aspects of xenobiotic metabolism and toxicity, but technical
and practical issues limit those that are currently available. Here
we will focus primarily on those that are best positioned at present
to facilitate agrochemical pesticide discovery and development:
those addressing mutagenicity, rodent toxicity, metabolism by
cytochrome P450s (CYPs), and bioavailability. Factors holding back
development of quantitative models for potentially important pro-
cesses like glucuronidation and glutathione conjugation will also
be described.

Most in silico metabolism and toxicity models depend implicitly
or explicitly on predicted physicochemical properties relevant
to absorption, distribution, metabolism, excretion and toxicity
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(ADMET). Lipophilicity (commonly expressed as logP, the common
logarithm of the octanol:water partition coefficient for the neutral
species), logP at a specified pH (logD), the negative logarithm of
the dissociation constant (pKa), and solubility under physiological
conditions are key examples of such physicochemical properties.

Many models for individual ADMET properties have been pub-
lished, and in most cases their usefulness has not been explored
outside the group that developed them. This is often because
either they are not readily available to other researchers or they
have not been integrated effectively with other models. Here we
will highlight software packages that provide access to multiple
models, especially those that combine their outputs somehow.
Most that go beyond simple tabular outputs are commercial
products. The information presented in Supporting Information
Table S1 illustrates the range of mammalian metabolism, toxic-
ity and bioavailability models offered as of February 2018, with
links provided to the website associated with each software pack-
age. Those included were chosen because they are more or less
directly applicable to mammalian metabolic and toxicological
aspects of pesticide discovery and early development; models
that address environmental effects such as bioconcentration and
aquatic toxicity were not taken into consideration. Integrated sys-
tems were favored over less structured compendia of models such
as ChemProp (http://www.ufz.de). More general and exhaustive
tabulations of ADMET-related software packages have been pub-
lished recently elsewhere.2–4

The agrochemicals chosen to illustrate how the models dis-
cussed herein can be applied reflect the author’s experience
in the area. They include: acetochlor and alachlor (chloroac-
etamides); glyphosate [an 5-enolpyruvylshikimate-3-phosphate
synthase (EPSPS) inhibitor]; the auxin 2,4-dichlorophenoxyacetic
acid (2,4-D); imazapyr and sulfometuron methyl [acetolactate syn-
thase (ALS) inhibitors]; and oxyfluorfen [a protoporphyrinogen
IX oxidase (PPO) inhibitor]. Twenty-five herbicides drawn from
a recent compilation of herbicides introduced since the turn of
the century5 were also included, along with three fungicidal suc-
cinate dehydrogenase (SDH) inhibitors (isopyrazan, benzovindi-
flupyr and sedaxane).

2 MODELING APPROACHES
Metabolism and toxicity are complex processes at the molec-
ular level and the inherent ‘noisiness’ of biological endpoints
only complicates matters further. As a result, all models intended
to make predictions about such a process – whether in silico or
in vitro – risk being overly reductionist.6 ‘Top-down’ approaches
generate a single over-arching model for each overall outcome
(e.g., liver microsomal clearance by CYPs). ‘Bottom up’ approaches
build models for the different mechanisms contributing to a par-
ticular endpoint and then combine those predictions.

A top-down model for overall CYP-mediated clearance in liver
microsomes can be built from fewer data than a set of bottom-up
models for individual CYP isoforms, but it can only provide appar-
ent affinity (Km) estimates and cannot account for genetic variants
in individual isoforms. A set of bottom-up models can be used to
predict kinetic parameters and effects of genetic variation, but will
miss clearance contributions from isoforms for which no specific
model has been built. The composite bottom-up model may miss
information from implicit intermediates (e.g., conjugates formed
after an initial oxidation or reduction step) that can contribute to
a top-down model, whereas the latter risks erroneously assuming
that the requisite reduction will occur in some other molecule.

Broadly speaking, computer models can be characterized in
terms of how the endpoint being predicted is described, the kind
of descriptors used to characterize the molecular structure, and
the mathematical form used to relate the descriptors to the model
output. Endpoints may be quantitative (e.g., what is the rate of
metabolism in liver microsomes?), multiclass (e.g., is it most likely
to be a substrate for CYP1A2, -2C9, -2D6 or -3A4?) or binary (e.g., is
it mutagenic or not?).

QSAR descriptors can be thought of as atom-centered (e.g., is this
substructure found in the molecule?) or molecule-centered [e.g.,
is the molecule as a whole polar and hydrophilic (water-loving)
or is it nonpolar and lipophilic (lipid-loving) or is it some-
where in between?]. Either kind of descriptor can require full
three-dimensional (3D) molecular structures as input or may only
require the connectivity of the molecule – i.e., which atoms are
bonded to which and the nature of the bond types. The latter are
referred to as ‘2D’ descriptors. One difference between the two is
that 3D descriptors can take chirality into account, which often
affects the activity of drugs and agrochemicals alike7 but which
has relatively little effect on most ADME properties.8 The potential
drawback of 3D descriptors is that their values are dependent on
molecular conformation. Hence the active site plasticity under-
lying the promiscuity of many enzymes involved in xenobiotic
absorption and metabolism limits their usefulness for modeling
ADME specificity and kinetics.9

Descriptors can also be characterized as substructural or molec-
ular. The former characterize molecules in terms of the individual
atoms or substructures that make them up, with separate sets of
descriptors for different substructures. Molecular descriptors, in
contrast, reflect properties of the molecule as a whole, with the
result that different molecules may have very similar descriptor
values (e.g., of molecular volume and overall charge) even though
their substructural compositions have little in common.

Finally, the mathematical form of the relationship between
the endpoint and the descriptors can vary considerably, with
the most common broad distinctions being between linear and
nonlinear [e.g., artificial neural network (ANN)10] models. One
should be aware, however, that linear models can account indi-
rectly for nonlinear effects if the descriptors used are correlated
in some nonlinear way. Unfortunately, the effect of such inter-
relatedness on the interpretability of (nominally) linear models
is generally underappreciated. This paper will focus on general
considerations to be kept in mind when selecting and apply-
ing a QSAR model. The kinds of models offered in commercial
software and in academic programs available in open source
environments use similar combinations of endpoints, descriptors
and mathematical forms. Top-down nonlinear models derived
from substructural descriptors currently dominate both groups.
ADMET Predictor™ (Simulations Plus, Inc. Lancaster, CA, USA;
http://www.simulations-plus.com) is atypical in that it relies
on artificial neural net ensemble models built from molecu-
lar descriptors rather than substructural ones. It also takes a
bottom-up approach to most endpoints – e.g., by providing quan-
titative kinetic estimates for five individual human CYPs as well as
site-of-metabolism predictions for each of nine isoforms. It is used
here to illustrate general points that should be borne in mind when
working with metabolism and toxicity prediction software, in part
because it offers a wide range of endpoint predictions (Table S1)
that makes it easy to illustrate how the various model outputs
can be combined and in part because of its availability to the
author.
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3 TOXICITY PREDICTION
3.1 Ames testing in silico
Despite the questions that have been raised about their relevance
to pesticide registration,11,12 Ames mutagenicity tests13 remain a
major regulatory hurdle that must be passed early in agrochemical
pesticide development. Although hundreds of thousands of these
assays have been performed, the majority of the results obtained
are not publicly available. Compounds that tested positive early
in development and were not followed up are underrepresented
because there is no legal requirement to publish such results.
Hence the available training data are not representative of the
compounds for which a prediction is desired.

Most literature compilations generated for building QSAR mod-
els are skewed in the other direction, often being unrepresenta-
tively balanced because the model-building tools used tend to
work poorly on unbalanced data. This is unfortunate, as weighting
the contributions to the output (‘objective’) function14,15 by class
size can generally accommodate class imbalances without ‘down
sampling’ the larger class to artificially balance the training data.

Multiple assay outcomes contribute to an Ames test result: five
bacterial strains bearing different inactivating mutations in the tar-
get gene are checked for reversion when treated with the test
compound alone or with reduced nicotinamide adenine dinu-
cleotide phosphate (NADPH) and the S9 microsomal fraction from
rat liver.13 A ‘positive’ in any single assay means that the compound
in question gets categorized as ‘mutagenic.’ Compilations of the
overall outcome, however, almost always categorize outcomes as
simply ‘positive’ or ‘negative.’ Hence most of the many QSAR mod-
els that have been built to predict them are binary classification
models built on binary categorization data. This unnecessarily dis-
cards potentially useful information about mutation events spe-
cific to one particular gene sequence.

In silico Ames tests illustrate the range of approaches that can
be used to model toxicity. The Computer Automated Structure
Evaluation (CASE) program (MultiCASE Inc. Beachwood, OH, USA;
http://www.multicase.com), Derek Nexus (Lhasa Ltd; Leeds, United
Kingdom; http://www.lhasalimited.org), and the Genetox Expert
Alerts in Leadscope’s Non-human Genetic Toxicity Suite Colum-
bus, OH, USA; (http://www.leadscope.com) are expert systems
that look for particular substructures (‘alerts’, ‘toxicophores’ or
‘biophores’) that have been found in compounds that have tested
positive in vitro. In practice, any such ‘guilt by association’ must
be tempered by allowing for the possibility that other substruc-
tures elsewhere in the molecule may attenuate or eliminate such
toxicity. Such programs are broadly applicable but intrinsically
qualitative in nature.

In many cases, such systems also provide an indication of the
likely mode of action for a compound predicted to be toxic, e.g., by
returning strain-specific Ames test results for similar compounds.
They are ‘top down’ in the sense that the binary test result (positive
or negative) is the modeled endpoint, rather than the individual
bacterial strain(s) responsible for that overall result. This can be
unfortunate, as the information discarded can provide clues about
the likely mechanism of DNA damage underlying the predicted
mutagenicity.

‘Statistical’ models take a different approach. Sarah Nexus (Lhasa
Ltd), Leadscope’s Genetox QSAR Models, and ADMET Predictor’s
Toxicity Module all fall into this category. The first two return binary
classifications and make use of substructure descriptors. ADMET
Predictor differs in that it relies mostly on molecular descriptors.
Statistical models are typically better able to provide a more

quantitative indication of how reliable a particular prediction is
going to be, i.e., of how confident one can be in it.14

The ‘bottom-up’ approach taken in ADMET Predictor creates
a separate model for each of the ten constituent assays, then
combines the results into an overall mutagenicity risk. The default
behavior is to flag a compound as probably mutagenic in the
aggregated output16 if the compound is predicted to give a
positive result for more than one strain. Doing so allows for one of
the predictions to be an in silico false positive, which is consistent
with the reproducibility of the Ames assay itself – about 85% even
allowing replicate tests to resolve borderline cases.17 It also allows
for the presence of spurious ‘positive’ results in the training data
for compounds (e.g., ALS inhibitors) that may stress the bacteria
used in the test. One can adjust that threshold if a more or less
conservative criterion is desired. It makes sense, for example, to
apply a less stringent filter early in discovery when large numbers
of compounds are being considered.

In a ‘real’ Ames test, assays are replicated and borderline or
ambiguous results prompt a retest. The equivalent for in silico
‘assays’ is to attach a confidence or uncertainty to each prediction.
Having some such a measure attached to each prediction is
especially important for cases where only one of the ten models
returns a ‘positive’ prediction.

A recent publication18 provides a more thorough discussion of
how the various in silico models for bacterial mutagenicity work
and an evaluation of their performance.

3.2 Predictive uncertainty
Any in silico property prediction for a new compound should not
be limited to absolute terms. Rather, it should come with two qual-
ifications: an estimate of how reliable that prediction is likely to be
and an indication of whether or not the compound is reasonably
similar to the compounds used to build the model – i.e., whether
it is ‘out of scope’ because it falls outside the model’s ‘applicability
domain’. The two kinds of qualification are connected, especially
when the only reliability estimate is a measure of the average qual-
ity of prediction.

For classification models, performance statistics like sensitivity
(the fraction of positive examples that are correctly classified),
specificity (the fraction of negatives that are correctly classified),
or the positive and negative predictive values (the fraction of
positive and negative predictions that are correct) are typically
reported. For regression models, the most relevant statistic is the
root mean square error or the mean absolute error. The coefficient
of determination (R2) is often reported as well, but it is very
sensitive to the range of the dependent variable and discounts
linear systematic biases. Whatever the statistic, the value obtained
for the test set – compounds set aside and not used in any way
to train the model – is the best indicator of what to expect for
predictions made for new compounds.

The test set sensitivities for the ten component models provided
in ADMET Predictor 8.5 for the in silico Ames test are fairly represen-
tative of useful classification models, ranging from 0.80 to 0.89. The
corresponding specificities range from 0.81 to 0.92. Underlying dif-
ferences in assay sensitivity and in the kind of compounds tested
lead to differing degrees of imbalance between positive and nega-
tive examples, with ratios ranging from 2.2:1 to 7.3:1. Acute rat tox-
icity is a fairly typical regression model. The root mean square error
and mean absolute error statistics for it are 0.59 and 0.45, respec-
tively, on the logarithmic scale upon which that model was built.
The former translates to a geometric mean fold error of 3.9-fold,
which is fairly typical for an in vivo toxicity endpoint.

Pest Manag Sci (2018) © 2018 The Authors. wileyonlinelibrary.com/journal/ps
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Figure 1. Displaying some toxicity predictions for four herbicides. The two entries for pyrasulfatole correspond to its major (hydroxyl) and minor (keto)
tautomers. The ‘Target’ column indicates the mode of herbicidal action: 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibition, protoporphyrinogen IX
oxidase (PPO) or acetolactate synthase (ALS) inhibition. The ‘Tox’ star plots summarize relative toxicity predictions. Moving clockwise from 12 o’clock: skin
and respiratory sensitization (green and blue wedges); acute rat toxicity (magenta); chronic rat and mouse toxicity (yellow and red); hepatotoxicity markers
serum aspartate transaminase, alanine aminotransferase and lactate dehydrogenase (cyan, purple and gray, respectively); and mutagenicity risk (blue).
Cross-hatched wedges represent predictions for out-of-scope compounds. The toxicity risk score shown in the ‘TOX Risk’ column ranges from 0 to 6; it is
≥ 2.0 for 17% of the compounds in a reference set of pharmaceuticals from the World Drug Index. Mnemonics shown in the ‘TOX Code’ column indicate
the potential liability identified: mutagenicity (‘MUT’), hepatotoxicity (‘HEPX’), chronic mouse toxicity (‘Xm’); and acute rat toxicity (‘rat’). The ten wedges
shown in the in silico Ames mutagenicity (‘Ames Mut’) column correspond to pairs of predictions (e.g., MUT_97+1537 and MUT_m97+1537; the latter is
activated with S9 microsomal fraction) for the five standard mutant gene sequences assayed. Results for four of assays are presented in the ‘MUT-XXX’
columns. The ‘Rat_Acute’ column gives the predicted 50% lethal dose for acute rat toxicity in units of mg/kg body weight. The image was generated using
ADMET Predictor 8.5.

Regardless of which performance statistic is reported, it can only
be relied on to reflect the typical uncertainty for compounds that
lie close to or within the model’s applicability domain; all bets are
off for compounds that fall very far outside of it.

Applicability domains can be defined by a molecule’s structure
or by its properties. The former approach is based on some
measure of similarity, typically one based on the number of shared
substructures. The latter approach is based on how similar the
properties of the molecule of interest are to those of compounds
used in model building. Similarity in this case is determined by
distance in the descriptor space or by whether some properties
of the new compound (usually in the form of descriptors) fall
outside the range seen for compounds used to construct the
model. Different models are often built from different data sets and
can use different descriptors, so a compound that is out of scope
for one model may be in scope for another.

An implicit assumption is often made when reporting aggregate
statistics and an applicability domain that all predictions within the
applicability domain are equally reliable, which is demonstrably
not always the case.19 It would be better to make use of confidence
models that relate predictive absolute or squared errors to some
set of molecular descriptors19–21 or to the spread in predictions
from an ensemble model.14,22 Robust methods for estimating how
much confidence one should have in an individual prediction have
only recently become an active area of research, however, so they
are not yet available in some software packages.

3.3 Putting predictions in context
Most programs that model metabolic fate or toxicity return pre-
dictions for multiple endpoints (Table S1). ADMET Predictor, for
example, generates predictions for many distinct toxicity end-
points. Twenty-three that are particularly relevant to mammalian
toxicity are shown in Table S2. One of the most challenging aspects

of presenting that much information all at once lies in finding
effective and efficient ways to communicate the results. Full details
(e.g., training set sizes, data sources, plots of predicted versus
observed values) are available in the documentation provided
with most programs, but the interface spreadsheet should pro-
vide the structure of each molecule of interest; a brief description
of aggregate statistics for each model; and – where available – a
classification confidence estimate. Predictions for out-of-scope
compounds should be highlighted in such a way that cells can
be color-coded without losing information. Confidence estimates
are not necessarily well defined for those compounds, so it is best
not to provide individual confidence estimates for them. There are
many different ways to address the need to integrate data visually.
Most programs opt for a spreadsheet, tiled or data page format.
Some support multiple data presentation modes.

Spreadsheets are most useful for considering many properties of
many compounds at once, whereas tiled views are well suited for
visualizing structural diversity across one or a few properties. Data
pages are for analyzing many predictions for one or a few com-
pounds. The conventions used in ADMET Predictor’s spreadsheet
are illustrated in Fig. 1. As is typical, abbreviations are used exten-
sively to maximize the density of information.

One way to relate disparate predictions to each other and to visu-
alize trends across compounds is to color-code cells in a spread-
sheet based on their value, i.e., from red to blue to generate a
‘heat map’. Another is to provide radar or star plots. Using star
plots has the virtue of making it easier to convey predicted val-
ues while highlighting any that are out of scope, e.g., by using
hashed fill patterns for the corresponding wedges rather than solid
fills (Fig. 1). A more complete set of physicochemical and toxico-
logical property predictions for the 40 agrochemicals evaluated is
provided in Table S2. The results shown in Fig. 1 illustrate some of
the subtleties that interpreting in silico predictions can involve. The

wileyonlinelibrary.com/journal/ps © 2018 The Authors. Pest Manag Sci (2018)
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4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor mesotri-
one is shown in the first row of the spreadsheet. It has a mutagenic-
ity risk of 2 and so is flagged as potentially being mutagenic in the
Ames assay, which it is not. The positive predictions for strain TA97
tested without S9 activation (‘S97’) and TA102 (‘S102’) are both
weak positives, however, with confidences of only 42 and 46%.

Positive predictions with confidences < 50% are allowed in such
models because the immediate cost of a false alarm is much
less than the downstream cost of mischaracterizing a mutagen.
Whether it actually merits being resolved by running an Ames
assay rather than being taken at face value depends on the quality
and quantity of alternative leads available.

Oxyfluorfen (second row) is correctly predicted to be hepato-
toxic (as indicated by the entry in the toxicity code column) but
not mutagenic.23 Mutagenicity predictions are shown in the ‘Ames
Mut’ column. Salmonella strains TA98 (yellow wedge) and strain
TA100 (red and cyan wedges) tend to both be positive or both be
negative, so each adds only 0.5 to the predicted mutagenicity risk
score when either of its two results (with or without S9 activation)
is positive. The total mutagenicity risk score is 1 in this case and no
mutagenicity flag is set in the mutagenicity risk code column.

Florasulam (the ALS inhibitor shown in the third row) is predicted
to elevate serum levels for two liver enzymes: aspartate amino-
transferase and lactate dehydrogenase, represented by the cyan
and gray wedges, respectively. Alanine aminotransferase is pre-
dicted to be normal, however, so no hepatotoxicity flag is set for
it; requiring both aminotransferases to be elevated parallels the
way clinical laboratory results are interpreted. The mutagenicity
risk for florasulam is also 0. Two of the negative predictions are out
of scope, however, which puts the overall classification in doubt;
the recommendation for it would be to run the in vitro test. Besides
resolving this particular ambiguity, the data obtained for it and
similar out-of-scope compounds could eventually be used to build
a local model or to build a new global model with an expanded
applicability domain.

Two tautomeric forms of the HPPD inhibitor topramazone are
shown in the last rows of Fig. 1. The hydroxyl form predominates
in aqueous solution, but a significant fraction is in the minor form
at equilibrium. In such a situation it is prudent to consider the
predicted properties of both. Both tautomers are predicted to ele-
vate serum levels of aspartate aminotransferase (cyan wedge), but
only the minor tautomer is predicted to elevate alanine transami-
nase levels. Lactate dehydrogenase must also be elevated for the
hepatotoxicity flag to be set, but its serum levels are predicted
to be normal. Its herbicidal activity is attributable to inhibition
of plant HPPD, but that enzyme is also found in mammals. The
elevated serum tyrosine levels that HPPD inhibition produces in
rats causes a range of transient toxic effects, albeit non-lethal
ones.24 This is consistent with the acute rat toxicity flag being
set, as is shown in Fig. 1, which is also set for five of 13 other
HPPD inhibitors examined (Table S2). The toxicity risk score of 0.76
reflects the fact that both the predicted acute rat toxicity (LD50
270 mg kg−1; right-most column shown in Fig. 1) and the pre-
dicted mouse chronic toxicity (LD50 30 mg kg−1 day−1; not shown)
are borderline when compared with a panel of 2270 commercial
drugs.16

4 METABOLIC PREDICTIONS
Pharmaceutical side effects are often attributable to metabolites
of active ingredients rather than the drugs themselves. The same
can be true for pesticides and their crop residues, but in their case

conversion to innocuous metabolites can be advantageous if the
parent pesticide is toxic.

Occupational exposure of human beings to intact pesticide
molecules and their metabolites is dominated by three routes:
through the skin (dermal), by inhalation and by ingestion. Mod-
eling the first two routes accurately requires the sort of detailed
pharmacokinetic simulations carried out late in development.
Exposure via those routes also typically depends on the physi-
cal form in which the pesticide is delivered to the subject rather
than on the pesticide’s molecular structure, so they are much less
well suited to QSAR modeling. The focus here is on ‘first pass’
metabolism after ingestion, which includes all enzymatic trans-
formations that take place as pesticides and other xenobiotics
move through the enterocytes lining the gut and – via the portal
vein – through the liver to the general circulation. These transfor-
mations fall into three broad categories: hydrolytic, conjugative
and oxidative. Each kind of transformation is carried out by systems
that are generally similar in plants, pests and animals but that can
differ sharply in the particulars.25

4.1 Hydrolytic and conjugative metabolism
Hydrolytic enzymes involved in pesticide metabolism can be very
specific but they usually are not. In most cases, they attack a com-
pound because it is designed to be hydrolyzed nonspecifically, typ-
ically to unmask a structural element – e.g., a phenolic hydroxyl
group or carboxylate – that is required for a desired effect within
the target organism but would interfere with absorption. Esters of
carboxylic acids are more hydrophobic than the acids themselves,
so they penetrate plant cuticles more readily. This makes esterifi-
cation a popular way to create pro-pesticides,26,27 in part because
the enzymes that cleave them are ubiquitous. Hence esters that
are readily cleaved in plants, fungi or insects are also likely to be
cleaved in the human gastrointestinal tract or liver.28 There is rarely
much point in trying to build a QSAR model for such a reaction.
The better approach to pro-pesticides is to identify ethyl and other
short-chain, unbranched esters29 and ‘cleave’ them in silico before
applying QSAR models. Failure to do so is likely to generate false
negatives during development projects and when comparing pre-
dictions to in vivo metabolite profiles during model validation. Fail-
ure to account for esterases present in microsomes by including a
control lacking the NADPH required by CYPs, on the other hand, is
likely to produce false positives for oxidative metabolism.

Sulfotransferases and UDP-glucuronosyltransferases (UGTs)
are the dominant mammalian metabolic conjugative enzymes
for electron-rich groups like alcohols, phenols, carboxylic acids,
amines and aromatic nitrogens. Glutathione-S-transferases (GSTs),
in contrast, act at electron-deficient sites (e.g., in halogenated
molecules and quinones). The conjugates produced by both kinds
of enzyme are more water soluble than the parent compounds
and ‘targeted’ for excretion. Susceptible sites are less common
in pharmaceuticals than in their primary (‘Phase I’) metabolites,
which has led to the sulfotransferases, UGTs and GSTs being
classified as secondary (‘Phase II’) metabolic enzymes.

This generalization is less applicable to natural products and
pesticides. Chloroacetamide herbicides and safeners, in particular,
are good substrates for mammalian GSTs. As it happens, they and
their conjugated metabolites are also subject to CYP oxidation to
quinonimines that then undergo a second round of glutathione
conjugation in rats.30,31

Very little detailed information is available regarding the speci-
ficity of sulfotransferases and their levels of expression tend to be
quite variable. Enough information is available to construct QSAR
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models for predicting those UGT isoforms for which a compound
is likely to be a substrate, especially when the glucuronide formed
is stable. Identifying the site of glucuronidation is difficult when
the metabolite is prone to rearrangement or spontaneous hydrol-
ysis back to the parent. This is a practical as well as a technical
challenge: if a particular product is correctly predicted to form but
spontaneously rearranges or breaks down under assay conditions
to regenerate the parent compound, is the prediction correct or
not?

Unfortunately, other analytical difficulties limit the amount of
useful kinetic information available for UGTs and makes them diffi-
cult to model.28 In particular, the active sites of UGTs are internally
oriented (facing the lumen) in liver microsomes.29 Hence in vivo
activity often depends on transporters that are inactive in the
microsomal preparations used in vitro, necessitating the addition
of detergent to make the enzymes accessible to the substrate. This
distorts kinetics and means that many compounds that test ‘pos-
itive’ as substrates in vitro turn out not to be glucuronidated in
vivo. As a result, most available UGT site-of-metabolism models are
based mostly on metabolites identified through in vivo analysis.

4.2 Oxidative metabolism
Mammals have several oxidative enzyme systems for degrad-
ing xenobiotics, including aldehyde oxidase and monoamine oxi-
dase. CYPs are the most broadly active and best studied group
of oxidative enzymes, however, and one which is very relevant
to pesticides.32,33 CYP kinetic behavior can be complex, but is
straightforward enough that a great deal of data are available from
which to build models. Many of those data sets are in need of
extensive curation, however. The CYP literature is rife with errors as
a consequence of the complex nomenclature of metabolites, typo-
graphical errors in activity units, and data from mutant enzymes
being ascribed to wild-type enzymes.34 A unique source of incon-
sistency is the older data obtained from bespoke recombinant and
reconstituted assay systems used before robust commercial prepa-
rations containing a single CYP isoform and NADPH:cytochrome
P450 reductase35 became available.

Even with those caveats, CYP metabolic transformations are
much more amenable to QSAR modeling than are those carried
out by UGTs. Indeed, reasonably ‘good’ predictions are easy in
some uncomplicated scenarios. Suppose one knows, for example,
that a compound is a substrate for CYP1A2, -2C9, -2D6 or -3A4
and that it is a substrate for only one of the four. One can assign
the correct isoform most of the time by applying a few simple
rules of thumb in sequence: acids are CYP2C9 substrates; large
molecules are CYP3A4 substrates; flat (aromatic) molecules are
CYP1A2 substrates; and anything else is a CYP2D6 substrate. For
compounds that satisfy the assumptions, the compound will be
assigned correctly most of the time.36 Such simplified models have
very narrow ranges of applicability, however. Many compounds
are not substrates for any of those four CYPs but are substrates
for another isoform, and many more are substrates for at least two
of the four isoforms. More generally applicable models are much
harder to construct.

Programs need to make a lot of predictions to cover the rel-
evant enzymatic properties for enough metabolic enzymes to
be useful. ADMET Predictor, for example, generates over 58 dif-
ferent metabolic predictions (Table S3). Of those, 36 come from
substrate/nonsubstrate classification or site-of-metabolism mod-
els for nine recombinant human CYPs as well as kinetic models
for Km, maximal rate of reaction (Vmax) and intrinsic microsomal
clearance for the five isoforms that dominate human xenobiotic

metabolism – CYPs 1A2, 2C9, 2C19, 2D6, and 3A4. See Table S1 for
the scope of other software packages. For predicting bioavailabil-
ity, it is also important to predict total CYP activity in human and
rat liver microsomes. Even that level of detail fails to fully account
for the existence of multiple alleles for some CYPs or variations
in expression levels across ethnic groups. It also fails to address
metabolism in many other species (e.g., cattle37 and other live-
stock) that are relevant to agrochemical pesticide development.

Only data from substrates can contribute to a kinetic QSAR
model, so it is a good idea to create a complementary sub-
strate/nonsubstrate classification model if possible. It is difficult
or impossible for a kinetic regression model to ‘learn’ about
molecules that are too big to enter the binding cavity of an
enzyme, for example, if they never ‘see’ them. Most nonsubstrate
examples for CYPs are necessarily presumptive, in that they have
not been reported as a substrate for the isoform being modeled
but they have been reported to be substrates for some other CYP.
Similarly, negative examples for sites of metabolism are sites that
have not been reported in molecules for which some site has been
reported. Such absence of evidence is only circumstantial evidence
of absence, however. As a result, it is not uncommon for seemingly
erroneous predictions made by good CYP models to be proven
correct after the fact.34

The constrained promiscuity of CYPs makes this a particularly
important consideration. The constraint comes from an unusual
form of evolutionary selection pressure due to what they must
not metabolize. A mutation that causes a CYP to oxidize glucose,
for example, will make the liver unable to carry out glycolysis
and will deplete the NAD(P)H reductant pool in cells where it is
expressed. That will likely be fatal even if the oxidation product
is innocuous, because it short-circuits gluconeogenesis. Having
robust substrate classification models makes it possible to identify
xenobiotics that are not CYP substrates because they ‘resemble’
privileged endogenous molecules, and do so in a way that models
built only upon data for substrates cannot.

4.3 Identifying sites of CYP metabolism
CYP oxidation typically involves direct attack on the lone pair
of a heteroatom or hydrogen atom abstraction from a carbon.
Stability of the free radical produced is necessary for oxidation
but it is not a sufficient condition: the substrate must be bound
in such a way that the atom to be oxidized lies close enough to
the activated oxygen bound to the CYP’s heme to react.33 The
ease of oxidation per se is a fairly localized atomic property that is
essentially the same for all CYP isoforms. Most differences between
CYPs therefore reflect differences in binding. Nonetheless, the
size and plasticity of CYP binding sites in general and of CYP3A
isoforms in particular mean that many compounds can bind in
more than one way to each isoform. Alternative binding modes
subject substrates to attack at multiple sites as a result, which leads
to multiple metabolites being produced.

All of these considerations make predicting sites of metabolism
by docking alone difficult.9,38 QSAR approaches have been
somewhat more successful.39–41 The result of applying site of
metabolism models to the dominant tautomer of pyrasulfotole
(an HPPD inhibitor), for example, is shown in Fig. 2. The methyl
groups at N1 and C3 are highlighted as being potentially suscep-
tible to attack, as is the unsubstituted N2. This is indicated by the
cross-hatched circles around the atoms in the output and the
arrows added for emphasis in the figure.

The corresponding CYP substrate classification models, however,
predict that the herbicide is not likely to be a substrate for CYP1A2,
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Figure 2. Predicted sites of metabolism for pyrasulfotole for the major human CYP isoforms. Gray arrows and crosshatching indicate potential sites of
metabolism by CYPs predicted not to attack the herbicide, whereas red arrows and crosshatching indicate likely sites of metabolism for isoforms for which
pyrasulfotole is predicted to be a substrate.

-2C19 or -2D6. Here, the highlighting is gray for those isoforms
to indicate the sites predicted if – contrary to expectations – they
are substrates, which can be helpful if direct assay indicates that it
has been misclassified by the substrate/nonsubstrate model. The
highlighting is red for CYP2C9 and CYP3A4 to indicate that they are
predicted to oxidize the herbicide. The overall prediction is that the
two methyl groups on the pyrazole ring will be oxidized but that
the unsubstituted nitrogen will not.

The C3-hydroxy metabolite M1 is predicted to be nontoxic
and subject to glucuronidation (not shown). The N-demethylated
metabolite M2, in contrast, is predicted to be hepatotoxic and to
have an acute rat 50% lethal dose (LD50) of 23 mg kg−1. That would
make it more than 20 times more potent that pyrasulfatole itself,
which is not predicted to be hepatotoxic (Fig. 1). That probably
reflects the exposure of the unsubstituted hydrazide [C(=O)NHNH]
group by demethylation. The prediction may reflect inhibition of
rat HPPD, but it is impossible to tell; the acute rat toxicity model is
‘top-down’ in nature, so mechanistic details are not predicted.

Other programs use color-coded circles and/or halos to convey
the predicted susceptibility to attack. Doing so does a good job of
communicating the ‘fuzziness’ of site-of-metabolism predictions.

4.4 Quantitative CYP metabolite prediction
Identifying sites of metabolism does not itself predict observ-
able metabolites, because the immediate oxidation products are
often unstable. Moreover, it says nothing about the distribution
of metabolites; doing that requires kinetic property predictions.
These can differ for different sites, although the CYP affinities (Km

values) are often fairly similar. Most Km values are 10𝜇M or above,
as is common for promiscuous enzymes. The main exception is
CYP2D6, which often exhibits sub-micromolar Km values for its
substrates.

As noted above, one CYP can attack multiple sites on the same
molecule and different CYPs can attack the same site. In some
cases, attack at different sites can yield the same product. This
makes it important to integrate the various predictions so as
to provide metabolic maps similar to that shown in Fig. 3 for
the dominant tautomer of pyrasulfotole (the map for the minor
keto tautomer, which is qualitatively similar, is not shown). It
might be possible to recover the metastable N-hydroxymethyl
intermediate, but in most circumstances it will spontaneously
eliminate formaldehyde to form M2. The keto tautomer shown is
predicted to be the more stable one for the desmethyl compound.

Having an estimate for the overall intrinsic clearance provides
an indication of how rapidly a compound will be metabolized,
and having predictions for each CYP isoform at each site makes
it possible to estimate the relative proportions of each that will
be produced. For pyrasulfotole, the ratio of C-hydroxymethyl M1
to N-desmethyl product M2 is predicted to be about 2:1 (Fig. 3).
The metabolism scheme shown provides a succinct summary of
data from 23 separate CYP models: nine for substrate classification,
nine for site of metabolism identification, and five for clearance
kinetics. Such metabolic maps for human CYPs do not necessarily
translate directly to rats, which have a different complement of
CYP isoforms. That said, the major CYPs in the respective species
(CYP3A4 and CYP3A1) belong to the same family (3A) and have
somewhat similar substrate specificities.

This prediction turns out to be consistent with the available
experimental data from the TOXNET record for pyrasulfotole (AE
0317309; http://www.TOXNET.nlm.nih.gov, accessed November
2017), which states that:

Following both oral and intravenous administration [in rat],
most of the dose was excreted unchanged as AE 0317309.
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Hydroxymethyl AE 0317309, desmethyl AE 0317309, and AE
B197555 were observed as minor metabolites in the urine
and feces. Following oral dosing, approximately 70% of the
radioactivity was excreted in the urine and 30% in the feces by
48 or 52 hr.

The reported fraction absorbed (70%) is less than the 100% pre-
dicted (Table S3). That may reflect errors in one or more of the
property predictions involved or it may reflect microbial degrada-
tion in the gut.42,43

QSAR models are not available for individual CYP isoforms
from rat, but models of overall CYP metabolism by rat liver
microsomes are. The small extent of metabolism reported is
consistent with the relatively low predicted intrinsic clearance
(16𝜇L min−1 mg−1 microsomal protein) for rat liver microsomes.
Binding to plasma proteins will further attenuate metabolism by
reducing the amount of free herbicide available to diffuse into the
hepatocytes where CYPs can act upon it. The low predicted frac-
tion unbound in rat (6%) is also consistent with the metabolic pro-
file obtained experimentally.

AE B197555 is the benzoic acid formed by complete removal
of the pyrazole ring in pyrasulfotole, possibly via subsequent
oxidation of M2. That possibility can be explored manually
metabolite by metabolite, but it is more convenient to generate
metabolites across multiple steps en masse; that makes it easy to
check each metabolite for predicted toxicity. In doing so, however,
it is important to take note of the expected overall yield as well as
the likely total clearance rate. Metabolites that are cleared faster
than they are generated are unlikely to be a problem. Aromatic
aldehydes generated by oxidation of hydroxymethyl groups like
the one in M1 above are a case in point. Were they to accumulate,
they would likely have significant toxic effects. In most cases they
do not, because they are rapidly oxidized to the corresponding
(usually innocuous) carboxylic acid by a CYP or by aldehyde
oxidase.

The availability of individual quantitative clearance models
makes it possible to evaluate this possibility in humans. Estimates

for intrinsic clearance by other enzyme classes and in other species
than human and rat are out of reach unless experimental data
become available. The same is true for active transport processes,
e.g., in the kidney.

5 BIOAVAILABILITY AND EXPOSURE
The intrinsic mammalian toxicity of a compound and its metabo-
lites are important considerations in pesticide development, but
they need to be considered in light of the likely systemic expo-
sure to the parent compound. In some cases, the pesticide itself
is innocuous but its metabolites are toxic. This section describes
how QSAR models for ADME properties in general and CYP activity
in particular can be used to estimate how much of an orally deliv-
ered bolus of pesticide is likely to reach the general circulation in
humans and rats.

Many things must be taken into account when estimating expo-
sure, including: how pesticide molecules get into an organism
(absorption); how they move through its body (distribution); how
they are biochemically transformed within the body (metabolism);
and how they are cleared from the body (excretion). Each ADME
property is important, but it is how they interact that determines
toxicological exposure. Whether a xenobiotic is metabolized in the
liver or not, for example, is largely irrelevant if it is not absorbed
from the gut or distributed through the body.

Such interactions can be complex but in most cases they
can be well simulated once the relevant ADME properties
are known (or can be accurately predicted) by applying
physiologically based pharmacokinetic modeling.44,45 Doing
so can also make it possible to understand differences between
toxicity in humans and other mammals37 that result from
differences in exposure. GastroPlus™ (Simulations Plus,
Inc.; Lancaster, CA, USA; http://www.simulations-plus.com),
SimCyp® (Certara; https://www.certara.com/software/pbpk-mod
eling-and-simulation Princeton, NJ, USA) and PK-Sim® (Bayer;
Leverkusen, Germany; http://www.systems-biology.com/) are

Figure 3. CYP metabolites and yields predicted for the 5-hydroxytautomer of pyrasulfotole. The total CYP intrinsic clearance estimates for the five major
CYP isoforms in human liver microsomes and for rat liver microsomes are indicated below the parent herbicide. The parenthetical values along the reaction
arrows indicate the intrinsic clearances for the associated CYP isoforms for that pathway. Reaction arrows without CYP annotations represent spontaneous
or enzymatic reactions. The benzoic acid metabolite shown is expected to result from several further rounds of oxidation of M2; it was added manually to
the figure.
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among the programs available for carrying out detailed analyses
of such processes.46,47

The compound-dependent parameters needed for pharmacoki-
netic simulations can be obtained from physicochemical measure-
ments and biochemical assays late in development, but they are
unlikely to be available earlier on and in silico QSAR models must
be used. The biochemistry is different in different species, so multi-
ple models are required. Because the amount of data in the public
domain is limited, all of the purely in silico models needed are only
available for human and rat at present.

Absorption of ingested compounds involves generic physico-
chemical properties like solubility and lipophilicity (logP). Only
passive uptake is considered in the pharmacokinetic simula-
tions provided in ADMET Predictor, which use a streamlined,
‘high-throughput’ version of the advanced compartmental and
transit model from GastroPlus to predict the fraction absorbed (Fa)
along the full length of the gastrointestinal tract. Active transport
can affect absorption, but the only general models available are
qualitative ones that classify a compound as an inhibitor or sub-
strate (Table S1). The data required for constructing useful quan-
titative models are lacking. Fortunately, ignoring the case where
active transport is most likely to occur – P-glycoprotein efflux in
the gut – yields a conservative estimate of exposure.

Distribution is usually dominated by binding to proteins in the
plasma, blood cells, and lipids in the various organs and peripheral
tissues. For pesticides, most such binding is relatively non-specific
and likely to be non-saturable at relevant plasma concentrations. It
is governed mostly by lipophilicity and ionization – e.g., whether
a molecule is neutral, acidic, basic or zwitterionic at physiological
pH. Its relevance in the kind of simple scenarios considered early
in agrochemical development mostly involves how freely a com-
pound can diffuse from the blood into the liver, where it can be
metabolized.

Metabolism in such simulations can usually be approximated
reasonably well by assuming it all takes place in the liver. In the
absence of experimental data, the hepatic clearance is calcu-
lated from the total CYP liver microsomal clearance predicted
for the relevant species. The fraction that reaches the gen-
eral circulation after first-pass hepatic extraction is the fraction
bioavailable (Fb).

Predicted Fa and Fb values for 31 selected pesticides are shown
in Table S3 and Fig. 4 along with those for significant alternative
tautomeric forms and ester hydrolysis products. Note that the
fraction that survives passage through the liver cannot be higher
than the fraction absorbed (Fa), so all points fall below the diagonal
1:1 line in panels A and B.

Some of the predictions displayed in Fig. 4 illustrate the reason it
is important to consider how physicochemical properties interact
with dose when evaluating exposure. In particular, oxyfluorfen
absorption and metabolism (the degree to which Fb falls below
the diagonal) are quite low in both species despite its predicted
hydrophobicity (logP and logD at pH 7.4), which is shown in
Table 1 along with some other relevant property predictions. A
more thorough list is provided in Tables S2 and S3. As expected,
the passive intestinal permeability is predicted to increase with
increasing hydrophobicity, but this is offset in many cases by the
concomitant decrease in predicted aqueous solubility.

The rate of absorption is proportional to the product of the
concentration of compound free in solution and its effective
permeability. The simulation results shown in Fig. 4 are based on
doses of 0.1 mg in 2.5 mL for rats and 10 mg in 250 mL for humans,
i.e., a nominal concentration of 40𝜇g mL−1. This is well below the

predicted acutely toxic doses for a 250-g rat. It is, however, well
above the solubilities of oxyfluorfen, pinoxaden, isoxaflutole and
pyrazolynate, which accounts for their relatively low predicted
bioavailability.

Formulation effects (e.g., gavage dosing as dispersions in veg-
etable oil) can be complicated and are hard to account for mech-
anistically. That said, the effects are qualitatively similar to that of
bile salts, which have been taken into account here. More sophisti-
cated programs can be used if more exact simulations are needed,
but commercial formulations are unlikely to be known anyway
early in development.

Limiting solubility probably also underlies the fact that the
pinoxaden is less well absorbed than its des-acyl hydrolysis prod-
uct: the latter is more polar but also much more soluble. The
relationship between thiencarbazone, sulfometuron and mesosul-
furon and their methyl esters is more straightforward: the more
lipophilic ester is better absorbed when its solubility is not limiting.

The kind of differences seen in panels C and D in Fig. 4 illustrate
those to be expected between rat and human absorption and
bioavailability. They are substantial in many cases. Such discrep-
ancies show the limits to which rodent studies can be expected to
anticipate what will be seen in humans, but they also demonstrate
how mechanistic simulations can be used to account for the differ-
ences between species. Moreover, experimental confirmation of
rat simulation predictions for advanced candidate molecules will
increase confidence in the corresponding predictions of human
exposure.

6 CAVEATS
Models of the kind described here can be very useful, but they
need to be applied with some care.48 Their predictive accuracy
varies with the chemistry involved, so the best way to assess
their usefulness for a particular area of chemistry is to compare
their predictions to the observed values for compounds one has
recently encountered whose properties have been measured.
Applicability domain information alone may not be adequate for
herbicides, which are not well represented in many ADMET data
sets.49 Moreover, training sets are likely to be biased towards
either very well-behaved commercial compounds or notorious
ones like methyl viologen and dioxins, for example, instead of the
kind of lead compounds likely to be encountered in agrochemical
discovery and development.

One should, in principle, be able to assess how well different
models perform by comparing the predictive statistics obtained
for test sets held back when building the models. Table S4 gives
training pool and test set statistics for the site of metabolism
models in ADMET Predictor. In practice, this does not work as well
as one would like, in part because different test sets are chosen
for each model. Site of metabolism models suffer from a further
complication: some authors include atoms which cannot be sites
of metabolism (e.g., quaternary carbons, carbonyl oxygens or
sulfonyl groups) when calculating statistics. Then, too, they may
report unusual performance measures such as ‘top 2’ (or ‘top 3’)
for sites of metabolism: a ‘hit’ is scored if metabolism has been
reported at any site ranked among the top ranked two (or three)
for a molecule. Table S4 includes ‘top 1’, ‘top 2’ and ‘top 3’ statistics
to illustrate the effect the different criteria have on the statistics
obtained.

Comparisons between programs are best done by third parties
who have access to most or all of the programs that are available.
Ideally the validation data used represent measurements carried
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Figure 4. High-throughput pharmacokinetic simulation results for selected agrochemicals and their hydrolysis products dosed at 100𝜇g in 2.5 mL of water
(rat) or at 10 mg in 250 mL of water (human). Gastrointestinal absorption was modeled using the advanced compartmental absorption system developed
for GastroPlus with subsequent liver metabolism calculated on the basis of the rat or human intrinsic clearance models in ADMET Predictor 8.5 and renal
clearance calculated from the glomerular filtration rate. (a) Estimated percent bioavailable (Fb) as a function of the expected percent absorbed (Fa) in a
fasted 250-g rat. (b) Estimated Fb as a function of Fa in a 70-kg fasted human male. (c) Estimated human Fa as a function of estimated rat Fa. (d) Estimated
human Fb as a function of estimated rat Fb.

out with the same assay and under identical protocols. Moreover,
the data need to not already be in the public domain; otherwise
some programs will have already incorporated the values to a
greater or lesser degree during training, i.e., some will have already
‘seen’ the compounds.

Independent comparative validations are technically demand-
ing but feasible for properties that are hard enough to determine
accurately that they have not been measured carefully for many
existing compounds (e.g., pKa,50–52 solubility,53 and logP54). Unfor-
tunately, ‘naïve’ toxicological and metabolic data for mammals
are much more difficult to obtain. Data obtained during pesticide
development will be published in a regulatory filing if a com-
pound is commercialized and will be kept confidential if it is not.
Accessible unpublished data are virtually nonexistent as a result,
which makes doing meaningful toxicity prediction comparisons
extremely difficult.55

Finally, existing in silico prediction software handles mixtures
as though their components do not interact, relating the

molecular structure of each ingredient and its metabolites to
physicochemical properties and biological activities – or lack
thereof – independently. They take no account of formulation or
interactions between components. The ability of safeners to pro-
tect crop plants from herbicides when they are applied together
often reflects shared routes of metabolism, e.g., by formation of
glutathione conjugates or metabolism by plant CYPs.27,56 Such
interactions can in many cases be simulated quite well in mam-
malian pharmacokinetic analyses57 and should be taken into
account when possible.

7 CONCLUSION
A complete prospective accounting of likely pesticide metabolism
is a complex undertaking that requires generating a wide range
of predictions. Many of the QSAR models needed for making the
required physicochemical and CYP metabolism predictions are
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Table 1. Predicted ADMET properties for selected agrochemicals.a

Compound name logP logD7.4 Water solubility (𝜇g mL−1) Peff
b (cm s−1 × 104) Acute rat toxicityc (mg kg−1)

Thiencarbazone-methyl 1.27 0.13 65 1.67 1374
Thiencarbazone 1.09 −1.52 184 1.24 1986
Oxyfluorfen 4.84 4.84 0.40 7.98 829
Pinoxaden 4.09 4.09 6.6 4.27 917
Des-acyl pinoxaden 2.45 1.94 132 3.05 399
Sulfometuron methyl 1.46 −0.32 253 0.61 5031
Sulfometuron 1.03 −2.01 468 0.40 6266
Mesosulfuron-methyl 1.86 0.67 614 0.26 2248
Mesosulfuron 1.46 −1.09 1091 0.17 2376
Aminocyclopyrachlor 0.72 −1.51 438 0.92 1399
Isoxaflutole 2.56 2.56 2.6 3.55 182
Pyrazolynate 4.56 4.56 1.0 2.94 1159

a Predictions were generated using ADMET Predictor 8.5 (Simulations Plus, Inc).
b Peff is the passive uptake component of effective jejunal permeability.
c The predicted acute rat toxicity prediction is expressed as the LD50, i.e., the dose required to kill half of the animals.

now available, as are tools for weaving them together to form a rea-
sonably complete picture of what is likely to happen in vivo. Many
desirable metabolic QSAR models – i.e., for harder-to-characterize
metabolic enzymes and for under-represented species – are not
currently available, but the infrastructure needed to construct
them is in place once the requisite data have been obtained.

The results presented here illustrate some of the ways that the
models already on hand can be used to anticipate mammalian
metabolism and toxicity of pesticides early in agrochemical devel-
opment. The focus is on herbicides, but the same tools can be
applied to other kinds of pesticides, metabolites and crop residues
as well. They are still a long way from being able to replace ani-
mal testing, but can help reduce it by identifying chemistry that is
unlikely to survive regulatory hurdles and stopping development
early. In addition, they can provide guidance on prioritizing testing
once compounds have been synthesized while providing a ‘second
opinion’ on in vitro test results after they have been run.
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