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Putting deep learning in perspective for pest
management scientists
Robert D Clark*

Abstract

‘Deep learning’ is causing rapid technological changes in many fields of science, and conjectures about its potential for trans-
forming everyone's work and lives is a matter of great debate. Unfortunately, it is all too easy to apply it as a ‘black box’ tool
with little consideration of its potential limitations, especially when the data it is being applied to is less than perfect. In this
Perspective, I try to put deep learning into a broadermechanistic and historical context by showing how it relates to older forms
of artificial intelligence; by providing a general explanation of how it operates; and by exploring some of the challenges
involved in its implementation. Examples wherein it has been applied to pest management problems are provided to illustrate
how the technology works and the challenges deep learning faces. At least in the near term, its biggest impact on agrochemical
development seems likely to come in automating the tedious work involved in assessing agrochemical efficacy, but getting
there will require major investments in building large, well-curated data sets to work from and in providing the expertise
required to assess the resulting model predictions in real-world scenarios. Deep learning may also come to complement the
machine learning methodologies already available for use in pesticide discovery and development, but it seems unlikely to
supplant them.
© 2020 The Author. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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1 INTRODUCTION
Broadly speaking, ‘artificial intelligence’ (AI) can be characterized as
any technology intended tomimic the humanmind's ability to per-
ceive, toanalyze, to reasonor–ultimately– tobecreative. Ithasbeen
a growing presence in our daily lives for many years, but until
recently its effects have stayed mostly in the background. We have
all benefitted for years fromautomated solutions to tedious pattern
recognition problems such as optical character recognition for mail
sorting and check processing. Automated translation has been visi-
ble, too, thoughmostly as a source of humorous examples that illus-
trate the technology's limitations. AI has loomed larger recently due
to thepublicity surrounding one approach inparticular: ‘deep learn-
ing’ (DL) programs that consistently outperform human grandmas-
ters at games like Go,1 and drive the development of autonomous
vehicles.2,3 Thisprogresshas ledsometopredictanewwaveof tech-
nological change that will have social effects on the scale of the
Industrial Revolution that began at the end of the 18th century.4 A
few of those with extensive experience in the field, however, have
pointed out that applying the tools is not as easy as it may seem;
applying them correctly, at least, is not.5,6

DL has been slow in coming to pest management per se, but it has
begun to make itself felt in agriculture in general.7 Exemplary applica-
tions include insect pest identification,8–13 identifying weeds in
crops,14–16 and differentiating between plant diseases.17 Such tasks
are directly analogous to tasks DL tools were developed to solve,
i.e. they are not fundamentally different from distinguishing cats from
dogs. More difficult and specialized applications like quantitatively

assessing plant damage in glasshouse screens or agrochemical field
tests will likely be forthcoming. Enhancing classical pesticide
quantitative-structureactivity (QSAR)models18–22 is likely tobeexplored
aswell, if recent publications in the drugdiscovery area23 are any guide.
This article is a Perspective, not a survey of the DL literature,

recent pest management applications, or a tutorial. Readers inter-
ested in an exhaustive survey of agricultural applications of DL
should consult the excellent reviews of the subject published in
2018.7,24,25 This essay is instead a collection of observations from
a researcher working at the periphery of DL – observations that
are informed by three decades of work on machine learning
(Box 1) in general, including a decade devoted to agrochemical
research and development. I start by looking backward, putting
DL into historical and technical context by describing how the
method evolved, how it differs from classical statistical modeling
approaches (Box 2), and some fundamentals of how it works. A
discussion of the general challenges it faces follows. I conclude
with some recommendations as to how and where DL might be
productively applied in agrochemical research.
Much of the DL literature is steeped in jargon, but there aremany

excellent general reviews available that range from the very gen-
eral5,26,27 to ones that focus on pharmaceutical23,28 or agricultural25
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research and development. The examples of pest management
applications discussed herein9,11,29,30 were chosen because they
include good summaries of previous work in their respective areas.
I have tried to favor references that are relatively accessible to

general audiences but still provide detailed and technical refer-
ences for anyone who wishes to get into the details. That said,
the field of DL as a whole is too big and is evolving too fast for
any publication to be considered comprehensive or definitive. It
follows that any projection of general or specific future prospects
– including this one – should be taken with a grain of salt.

2 THE EVOLUTIONOFNEURALNETWORKS
2.1 Decision trees
Arguably the earliest AI programs consisted of a series of questions.
The response to each question obtained by soliciting input from a
user or by analyzing the input subject of interest (e.g. a disease31)
could be used to determine which question or questions needed
to be asked next. The questions used in such programs and their
placement in the hierarchywere originally based on interviewswith
experts in the field of interest, hence they came to be known as
‘expert systems’. A simple example based on an expert system for
diagnosing fungal disease in red chili peppers32 is shown in Fig. 1.

Onceenoughinformationhadbeenobtainedtocometoafinaldeci-
sion,aclassificationlabel (e.g. ‘probablyFusarium’or ‘probablyAntra-
knosa’) would be generated and communicated back to the user.
Unfortunately, askingexperts to reduce theprocessbywhich they

come to a decision to a series of questions and answers sometimes
fails to capture everything that is actually involved in the process,
even when that process is a relatively simple one and the experts
being interviewed all see it in a similar way. At least initially, such a
scheme is almost guaranteed to work poorly for the kind of compli-
cated systems where such automation is most useful. This was
addressedby runningmanysubjects throughtheprogram,compar-
ing theoutputsgeneratedbytheprogramwith thoseobtained from
a panel of experts, and then tweaking the questions and their
arrangement until the degree of agreement was satisfactory.
Inmanycases it turnedouttobeeasier tosimplyaskexperts topro-

vide the important questions (e.g. ‘Is it a caterpillar?’ or ‘How many
legs does it have?’when identifying insects) and collect the answers
to each question for a set of examples to use in building a model,
i.e. to create a ‘training pool’. Data from the training pool were then
fed into the computer as ordered sets of values (i.e. ‘input vectors’)
along with the corresponding endpoint (i.e. the desired output).
Internally, ‘Yes’ and ‘No’ answers were typically represented by ‘1’
and ‘0’ in the input vector. The computer program then explored a

Box 1. Some machine learning terminology
Machine learning encompasses a variety of computational tools that model the properties of an existing data set in such a way that the properties of
new examples can be accurately predicted. It is often cast as a proper subset of AI, but most reviews consider population-based techniques like mul-
tiple regression (see Box 2) to be examples of machine learning.7,39 The statistics community distinguishes between such statistical modeling
methods and purely algorithmic ones, however.57

Decision trees, random forests and neural networks are described pretty thoroughly in the text (see section entitled ‘Decision trees’). For further
discussion of them and other machine learning methods not alluded to here, see one of the many recent reviews available on the topic.7,39

Classical multiple linear regression (MLR) takes an ordered set of input values (i.e. a vector of descriptors) and the corresponding endpoint values
(i.e. a data matrix) and directly calculates the high-dimensional straight line that minimizes the sum of squared endpoint deviations from that line. If
the dependence of the endpoint on the descriptors is in fact linear, the distribution of noise in the endpoint values is independently and identically
distributed (IID), and the training pool represents a random sample of the population of interest, then an MLR model is expected to be statistically
optimal. Moreover, if the descriptors are statistically independent variables and the underlying relationship between them and the endpoint is linear,
the magnitude of the coefficients obtained reflect the degree to which each ‘explains’ the endpoint.

Tools exist for dealing with cases where the underlying relationships are known to be non-linear or where the distribution of noise across the sam-
ple is more complex, but such generalized multiple regression techniques require correspondingly more complex assumptions about the functions
and distributions involved. Moreover, they still generally rely on an assumption that the descriptors are statistically independent.

Unfortunately, the descriptor sets typically encountered in practice are highly intercorrelated, sampling is rarely random in any realistic sense, and
experimental errors are often neither uniform nor independent of the endpoint even to a first approximation. Moreover, if the pool of potential
descriptors is larger than the number of observations in the training pool, the resulting data matrix is indeterminate – i.e. the optimization problem
will have no unique solution.

Principal components analysis (PCA) entails extracting a series of linear combinations of descriptors that are not correlated with one another. The
‘latent variables’ obtained are generally better suited to MLR than are the correlated input descriptors, and using a subset of them for that purpose is
termed PCR. The term ‘principal components’ refers to the fact that the latent variables are prioritized by the degree to which they capture the overall
information content (variance) in the original descriptor matrix. Having more descriptors than observations is handled by keeping the number of
latent variables small.

Partial linear regression (PLS; also known as projection to latent structures) is similar to PCR but takes the correlations between the descriptors and
the endpoint into account when extracting and prioritizing vectors of ‘latent variables’ for use in regression analysis.

Support vector machines (SVM; originally called ‘support vector networks’58) are models in which a rather complex non-linear buffer zone (the
‘support vector’) is identified rather than a linear regression line. The distribution of endpoints away from the buffer zone represented by that band
have little direct influence on the optimality of classification models, which reduces the sensitivity to outliers.

The details of how they accomplish this and the sense it which it is optimal lie beyond the scope of this Perspective; please see the reviews cited
above for details.

An activation function is the function applied to the aggregated inputs to a hidden neuron to generate theoutput to another hiddenor output neuron.
Sigmoidal activation functions (typically the logistic or hyperbolic tangent) are used for shallow ANNs. Rectilinear activation functions (zero below a thresh-
old and linear above it) are more common for DNNs. The long short-termmemory functions often used in RNNs can be thought of as a kind of activation
function.

Wavelet analysis is similar to PCA in that it involves decomposition of the descriptor datamatrix into a series of complementary combinations of the
inputdescriptors,but itdiffers in that thedescriptor combinationsarenotconstrainedtobe linear. It ismost typicallyusedwith spectraldata, e.g. tomon-
itor stress in wheat due to aphid infestation using infrared reflectance spectroscopy.41
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variety of arrangements of the questions (‘models’), applying them
to the examples to determine which model produced outputs that
bestmatchedtheendpointvalues.Theprocess includedsettingspe-
cificnumerical decision thresholds (e.g. six versuseight legs) fornon-
binary decision points.
The models that result are called ‘decision trees’.28 The variation

most commonly used today is called a ‘random forest’ model. It
consists of an ensemble (‘forest’) of decision trees, each trained
on a random subset of the training pool data and taking molecu-
lar descriptors as inputs. The model's output is the average
(or consensus, for classification problems) of the individual tree
predictions. The degree of concordance of the predictions is taken
as an indicator of the average prediction's uncertainty. Note that it
is not a direct estimate of the uncertainty, however, because the
models in an ensemble trained to a common endpoint are not
likely to be statistically independent.33

2.2 Artificial neural networks
The next evolutionary step in the development of DL can be
thoughtof as letting the computer formulate thequestions them-
selves based onpotentially relevant input vectors and their corre-
sponding endpoint values. This can be done by setting up a
network of interconnected nodes arranged in several layers

(Fig. 2), with each node in the first layer corresponding to a partic-
ular input attribute and with each node in the last layer corre-
sponds to one kind of output. Nodes in the intermediate
‘hidden’ layers are connected to nodes in the layer below them
and to the nodes in the layer above them but not to others in
the same layer (Fig. 2). Each incoming connection has a weight
and each node has an associated offset (‘bias’). The output values
(‘weights’) for the outgoing connections from a hidden node are
obtained by applying a non-linear ‘activation function’ to the
summed weights of its incoming connections minus the node's
bias. Each hidden node can be thought of as a question about
the values of its incoming connections, and its output as an
answer to that question that depends on the bias value for that
node. Unless a simple step function (e.g. ‘0’ if the arithmetic com-
binationof incomingvalues is less than thebias and1 if it is greater
than or equal to the bias) is used as the activation function, the
‘answer’ is a continuous number rather than the binary positive
(‘Yes’) or negative (‘No’) typical of decision trees. This accommo-
dation of fuzzy answers allows such networks to better handle
subtle distinctions than decision trees that are restricted to ‘crisp’
answers at each step can.
Such systems were used, among other places, in pesticide QSAR

analysis.18,22 They were referred to as ‘multilayer perceptrons’ or as
‘artificial neural networks’ (ANNs) because their structures were
inspiredbythewaypeople thought thebrainprocesses inputswhen
recognizingpatternsandmakingdecisions. In that scenario, thenet-
worknodes are analogous to neurons and the connections are anal-
ogous to synapses. The analogy turned out to be seriously flawed27

but the nomenclature stuck, and the network nodes have been
referred to as ‘neurons’ since then.* Similarly, ANNsare said to ‘learn’

Box 2. The two cultures of modeling
Machine learningmethods (see Box 1) have been characterized as fall-
ing into twodifferentgroups.Thedecisiontree, randomforest, andneu-
ral network models discussed in the body of the text focus on
generatingoutputs thatwillmatch theendpoint values associatedwith
sets of inputs that have yet to be encountered; where the data came
from tends to be a secondary consideration. Suchmodelswere catego-
rized as ‘algorithmic’ at the turn of the century57 but ‘descriptive’ seems
equally or more appropriate now.

The traditional modeling culture relies on more familiar tools like
analysis of variance (ANOVA), MLR, and PLS, methods that focus on elu-
cidating the underlying relationships (associative and causal) between
endpoint values (dependent variables) and potential inputs (descriptors)
that are specific to each data set. Its practitioners treat each data set as a
sample from the population about which the modeler wants to make
statistically valid inferences. This focus presumes knowledge about
how data are distributed across endpoint values and the attributes of
interest (‘descriptors’), as well as how those attributes relate to each
other. These are niceties with which more recently developed
approaches are not particularly concerned. Such approacheswere called
‘data modeling methods’ in the 1990s.57 but ‘statistical methods’ seems
more apt today. When the assumptions made about the distributions
involved are correct, one can make good predictions based on a mini-
mum amount of information. Moreover, it is often possible to calculate
how confident one can be in those predictions. Conversely, the conclu-
sions drawn can be very wrong if incorrect assumptions are made about
the underlying population. Some degree of residual deviation from the
model in the form of random noise is expected and accounted for.

Simple statistical models work well for linear relationships and end-
points for which residual deviations are normally distributed, provided
the data set is a random sample of the population of interest. The degree
of correlation between thedescriptors in the target populationmust also
be taken into account when interpreting the statistics they produce. If it
is low enough, they can be treated as independent variables, but if it is
high it is often necessary to generate a reduced set of uncorrelated
descriptors – i.e. ‘latent variables.’ Coming to a correct conclusion
depends on getting the details of the distributions involved correct,
which generally makes statistical methods less amenable to automation
than are those that make use of descriptive modeling methods.

Figure 1. Simple classification model to distinguish among some fungal
infections of red chili peppers. Adapted from the expert system described
in reference 30.

*There has been a recent shift towards referring to neurons as ‘units’ or
‘modules’, perhaps in part to reflect their increasing ‘internal’ complexity
and in part to move away from (mis)identification with biological neural
networks. I will stick to the ‘neuron’ terminology here for the sake of
consistency.

Deep learning in perspective www.soci.org

Pest Manag Sci 2020 © 2020 The Author.
Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

wileyonlinelibrary.com/journal/ps

3

http://wileyonlinelibrary.com/journal/ps


the relationship between inputs and outputs as the weights and
biases are iteratively adjusteduntil theoutputsobtainedare ingood
agreement with the corresponding endpoint values or classifica-
tions (‘labels’). Such anthropomorphic terminology can bemislead-
ing but it is standard for the field and so will be used hereafter
without further apology or qualification.
It is worth noting in passing that decision trees start from a sin-

gle initial question and branch downwards from there, with each
terminal node in the tree (each ‘leaf’) representing an output. Clas-
sical ANNs have an inverted architecture, where inputs feed into
neurons at the ‘top’ of the network (the leaves) and the branches
in the network eventually converge down to a single output node.
The ANNs developed for QSAR applications in the1980s gener-

ally employed a sigmoidal activation function, and processed
the training pool as a block throughout the training process. They
typically had a single hidden layer of neurons and were ‘fully
connected,’meaning that each neuron is connected to every neu-
ron in the layer immediately above it and to every neuron in the

layer immediately below it. There were no connections between
neurons within a layer, however, nor to neurons not in layers adja-
cent to its own. A schematic representation of one such network is
shown in Fig. 2. There is an input neuron for each element in the
input vector of descriptors and a single output neuron that yields
a value for regression models or a classification label for binary
endpoints. This kind of architecture has been and still is frequently
used in QSAR work.18,34

Training ANNs is a stochastic process rather than a fully deter-
ministic one, with network weights and biases randomized before
training begins. Input vectors (e.g. molecular attributes relating to
size, lipophilicity, polarity, net charge, and the presence or
absence of particular substructures) are fed into the network
and the outputs compared to the observed endpoint values
(e.g. herbicidal, insecticidal or fungicidal potency). Traditionally,
discrepancies found are fed back up through the network (‘back
propagated’), and the weights and biases modified so as to
reduce the discrepancies. The cycle iterates until the outputs are
in good agreement with the endpoints. Iterating all the way to
convergence is not a good idea because the network tends to
become overtrained, memorizing noise not relevant outside the
training pool as well as or instead of the signal. Learning random
or incidental correlations can also result. Some kind of early stop-
ping technique needs to be employed to prevent this. A good
approach is to verify at the end of each iteration that predictions
for some training pool compounds not directly used in training
(a ‘verification set) keep getting more accurate as the weights
continue to get optimized.35

3 DEEP NEURAL NETWORKS
Classical ANNs are ‘shallow,’ in that they typically have only a sin-
gle layer of hidden neurons. They work quite well when the inputs
take the form of a true vector – i.e. the meaning of the tenth input
value is the same for all examples in the data set. It turns out that
architectures with many hidden layers of neurons (deep neural
networks, or DNNs) can make sense of input streams that are only
partially ordered, i.e. for which the meaning of the tenth input
value for one example depends on the values of inputs for that

Figure 3. The panel of example images the ten associated labels used in a recent study on using a convolutional neural network (CNN) to classify images
of insect pests associated with tea plants. Insects were identified by the authors as (a) Locusta migratoria, (b) Parasa lepida, (c) Gypsy moth larva,
(d) Empoasca flavescens, (e) Spodoptera exigua, (f) Chrysochus chinensis, (g) Laspeyresia pomonella larva, (h) Spodoptera exigua larva, (i) Atractomorpha
sinensis adult, and (j) Laspeyresia pomonella adult. [Figure reproduced with permission from Dawei et al. J Sci Food Agric 99: 4524–4531 (2019); reference
9.]

Figure 2. Schematic diagram of a simple fully-connected artificial neural
network with one hidden layer and a single output.
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example that are ‘close’ to it in some sense, but is not necessarily
related to the meaning of the tenth input value for other exam-
ples. The color and intensity of pixels encountered in a photo-
graphic image are good examples of such partially ordered
inputs: an image of the blue leaf beetle Chrysochus chinensis, for
example,9 will include many blue pixels very similar in color to
many of the pixels near it. The presence of such a blue patch is
a strong indicator that the image in question is of blue leaf beetle
in the picture, especially when the other pest options are green or
some shade of brown (Fig. 3).

3.1 Convolutional neural networks
Manyof theDNNs responsible for high-profile successes operate on
two-dimensional (2D) images,which convolutional neural networks
(CNNs)weredesignedtoprocess. Theyare theeasiest kindofDNNto
represent schematically, and an example is shown in Fig. 4. Unlike
thehighlystructuredattribute inputs typicallyused inQSARanalysis,
the information inimages isonly locally structured intocharacteristic
‘features.’ If an insect pest has eyes, antennae,wings, legs and spots,
those features are going to lie close to one another relative to unre-
lated features in the image, and the characteristic combination of
more elemental features that make up those features – i.e. edges,
arcs, and patches of color – lie even closer together. The exact loca-
tionof each feature in aparticular image, however, is subject to rota-
tion, translationandscaling(zoom)effects.Henceeachneuroninthe
first hidden layer of a CNNonly receives inputs frompixels in a small
part of the image, and the same partial connectivity applies as one
moves down through the network, though the definition of ‘local’
changes. The result is that the upper layers in a trained network rec-
ognize basic features such as edges, lines and patches of proximal
pixels similar in color. Information about the relationship between
basic features percolates down to deeper hidden layers that recog-
nizecomposite features likea caterpillar's legsand stripesor spots.26

The process of deciding which images should be included in the
training pool or in the test set against which the final model is
evaluated can have major effects on training outcomes. Selection
may be semi-automated but nearly always includes some manual
elements, either on the part of the person compiling the data set
or indirectly – often before the image is posted on the inter-
net.29,30,36 In addition, images are preprocessed to some degree
before being submitted to the CNN, either by applying automated
tools or manual selection to pick out objects (weeds or insects of
interest) in training pool images.10,14,16,30

3.2 Recursive neural networks
Natural language and other sequentially organized data are
processed by a different kind of neural network. Long-range
but variable relationships in such input streams – between a
verb and its object when extracting data from literature textual
sources, for example – can be as important as local ones if not
more so. The recursive neural networks (RNNs) developed to
process such data sets contain feedback loops (recursions) that
allow them to remember some past inputs and to forget others
as it proceeds down the input stream. They can be difficult
to represent schematically, and interested readers are referred
to a recent review37 for technical details. Most current imple-
mentations incorporate a special kind of network substructure
called a long short-term memory (LSTM) cell, which can be
thought of as having a special activation function that modu-
lates its inputs and outputs based on some inputs encountered
earlier in the input stream.
RNNs may eventually be the kind of DNN that has the greatest

influence on the practice of QSAR in general.38 That is because
they can generate a vector of customized molecular descriptors
directly from molecular structures by parsing their representa-
tions in an artificial language (the simplified molecular input line
entry system, or SMILES) that captures their connectivity.39 The
existence of rings or branching in molecules introduces the
long-range relationships that necessitate the use of RNNs for pro-
cessing such inputs.
Some preprocessing is done to reduce the amount of learning

the DNN has to do. It is generally canonicalized to some degree
before ‘tokenizing’ it by replacing multi-character elemental sym-
bols like ‘Cl’ and ‘Br’ with special single characters, for example. A
special character is then inserted at the front and another at the
end of each input SMILES, and dedicated ‘null’ characters are then
added to the string to pad it out to a fixed length.

3.3 Transfer learning
DNNs require large numbers of diverse examples if they are to
perform well outside the data set used to train them,5,40 but
the amount of data available for a given endpoint of interest is
often relatively limited. Such cases are often addressed by train-
ing a deep network on a large data set that is available
(e.g. chemical structures from PubChem or general set of inter-
net images10), with (‘supervised’) or without (‘unsupervised’) a
generated target property such as hydrophobicity estimates
from an existing QSAR model. In the unsupervised case, the net-
work is training by running it ‘backwards’ to see how accurately
it reproduces the input SMILES strings from the output vectors of
descriptor values.
Supervised models are then retrained on the smaller data set

using the endpoint of interest and keeping all parameters fixed
for all but the bottom-most layers of the network. Outputs from
unsupervised models represent a condensed representation of
the input data and can serve as input descriptors for simpler neu-
ral nets or other machine learning tools. These can be seen as
non-linear analogs of the latent vector used in partial least
squares (PLS) and principal components regression (PCR), respec-
tively (see Box 1). They differ in that they represent a non-linear
combination of the input descriptors; in that they are more akin
to wavelets.41

Such descriptors are produced without direct human inter-
vention. In that sense, they are fully ‘synthetic.’ Work done to
date suggests that they are comparable in usefulness to arti-
sanal QSAR descriptors used in the past, but it remains to be

Figure 4. Schematic diagramof a simple deep neural network (DNN) with
two hidden layers and three outputs.
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demonstrated that the models built upon them are robust. If
experience shows that they are superior, they will represent a
full realization of DL as a branch of AI, in they can be seen as
expert systems in which all questions were formulated by a
computer without benefit of direct human input. If it does not,
they will join wavelets41 in the machine learning tool box as
an interesting and sometimes useful complement to more clas-
sical descriptors.

4 CHALLENGES FACED BY DEEP
LEARNING
DNNs are powerful tools but they are not magic. The programs
used to build them are very complex and many of the details of
how the DNNs they produce actually work are generally hard to
pin down, making it surprisingly easy for them to consistently pro-
duce correct answers for the wrong reasons or to the wrong ques-
tions.6,40 Even when used for the purposes for which they were
originally intended, the models produced often turn out to be
brittle when carefully tested, failing in surprising ways. Somewhat
ironically, one of the best ways to identify flaws in a DNN is to train
a second DNN to ‘break’ it. Unfortunately, most problems of agro-
chemical interest are somewhat different from those that DNNs
were originally created to address, which makes it harder to be
sure that the optimization criteria used are appropriate to the task
at hand.40

4.1 Activation functions
DNNs were rarely used until recently for several reasons. First,
those that employ the sigmoidal activation functions used in
shallow ANNs tend to be difficult and computationally expensive
to train, especially for large data sets. For one thing, advances in
processor technology have increased the amount of affordable
computational power enormously. For another, DNNs now typi-
cally employ rectified linear activation functions (where f(x) = 0
for x < 0 and f(x) = x for x ≥ 0) in place of sigmoidal activation
functions. Either alternative reduces problems with the gradient
calculations upon which training depends.42 The change also
means that relationships between inputs and outputs in deep net-
works are piecewise linear rather than being smoothly non-linear,
but this seems unlikely to have much practical effect. More
recently, hybrid ‘Swish’ activation functions inwhich linear and sig-
moid functions are multiplied together have been employed.43

4.2 Overfitting
Secondly, fully connected ANNs having even a few hidden layers
have a large number of independently adjustable parameters, usu-
ally more – and often many more – than the number of observa-
tions in the data sets available, at least for the sorts of problems
encountered in pest management. Having so many adjustable
parameters makes it easy to generate a model that has learned
the noise – random and systematic – that is always present in real
world data alongside of reliable information. The fact that CNNs are
not fully connected reduces the number of adjustable parameters
in the network. Conversely, training a single network against mul-
tiple target outputs or labels simultaneously effectively increases
the number of observations disproportionately more than the
number of adjustable parameters. The number of adjustable
parameters remaining is still typically large compared to the num-
ber of observations in the training pool in both cases, however.
If the performance of a network having an excessive number of

independently adjustable parameters is fully optimized, the final

model is guaranteed to memorize incidental details from the
training pool as well as general trends – i.e. it will become ‘over-
fitted.’ Overfitting is problematic because it can compromise the
ability of a model to make accurate predictions for examples that
are different in someway from the examples used to train it, i.e. to
‘generalize.’ When an overfitted model is applied to a test set
drawn from outside the training pool, for example, it will typically
perform more poorly than it did on training pool data – some-
times exceedingly so.
Statistical modeling methods (Box 2) can address overfitting by

applying regularization techniques that modify the optimization
criteria in a way that directly drives the model towards simpler
forms. Less direct, ‘implicit’ regularization techniques are usually
used35,44 to address the overfitting challenge in DNNs. The
methods used are empirical, and the measure of improved gener-
alization is empirical as well: how well does the model perform on
a representative (‘test’) subset?
One common approach is to only look at a subset of the training

pool in each training iteration for the network rather than at the
whole pool. Doing so presents the program with a constantly
moving target during the training process. The expectation is that
consistent trends will show up in all subsets and be reinforced as a
result despite the constant perturbation, whereas random noise
will fluctuate around zero and tend to cancel out.
‘Dropout’ is used as well. This involves setting weights for a ran-

dom subset of the neurons in the network to zero as each obser-
vation in the training set is presented during training, so that each
observation ‘sees’ a somewhat different model. Once the model is
completely trained, a prediction is made by weighting each neu-
ron in the final model by its assigned probability of having been
dropped during the training process. This yields a prediction that
approximates the value one would obtain by averaging all possi-
ble alternative models with the specified distribution of dropped
neurons.45 The analogy to random forest models –wheremultiple
models are built from random samples of the observations and of
the descriptors – is intriguing but inexact.
Extensions of dropout include pruning and batch normalization.

Pruning compresses a model by setting the weights for less
important neurons to zero, a process analogous to backward elim-
ination of variables in linear regression (Box 1). Batch normaliza-
tion, in contrast, is a smoothing process in which weights are
rescaled within layers in a way that reduces the sensitivity of the
output to changes in individual weights.
Unfortunately, these techniques do not always avoid memoriz-

ing incidental associations in the training data (see later) even
when they are effective at reducing overfitting as measured
across the entire test set.35 Overfitting can also bemissed because
the test set used is not distinctive enough with respect to the
training pool, which is a common problem with using random
sampling to choose a test set from the very large data sets that
DNNs need to be trained on if they are to be effective.40 A more
insidious problem is that average performance on the test set
risks discounting systematic errors in the input data that perturba-
tion does not average out – i.e. biases – that get learned along
with correct information.

4.3 Biases and incidental associations
The drive to obtain large data sets can cause problems when
data from disparate sources are combined, especially if the con-
ventions in pose, orientation and background introduce biases
that lead to nominally correct predictions for the wrong
reasons.46
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Photographs found on the internet, for example, have often
been pre-selected or staged to highlight a particular aspect of
the subject. The images shown in Fig. 3 nicely illustrate the
potential for introducing incidental but systematic correlations
between the intended target in an image and the background.
Learning to differentiate between the locust Locusta migratoria
(Fig. 3(a)), the leafhopper Empoasca flavescens (Fig. 3(d)), and
the grasshopper Atractomorpha sinensis (Fig. 3(i)) is a fairly diffi-
cult task in terms of the insects themselves, but in the examples
shown in Fig. 3, A. sinensis is pictured against a more or less uni-
form background. Locusta migratoria and E. flavescens are both
pictured on what look to be similar leaf surfaces, though the leaf
in the latter is enlarged and slightly out of focus to compensate
for the insect's smaller size. Similarly, the larvae of the Laspeyre-
sia pomonella (Fig. 3(g)) and beet armyworm Spodoptera exigua
(Fig. 3(h)) are perched on leaves from distinctly different plant
species.
Examination of figures from the group's previous publication in

which this data set was originally described36 suggests that the first
set of potential biases may not be fully realized in this case. In fact,
Locusta migratoria are more often depicted on plant stems than on
leaves, and A. sinensis is shown against a variety of backgrounds. In
general, however, DNNs are quite sensitive to systematic and
implicit biases in the input data that result from such incidental
associations between background elements and features of the
objects themselves. Early applications of DNNs in image recogni-
tion were single label classifiers. The images containedmany extra-
neous features, but constraining the output to a single label taken
from a short list of candidate labels led the networks to learn easy-
to-recognize indirect cues rather than the more subtle but appro-
priate ones. A good example of this is the case where a model
trained to distinguish huskies from wolves produced ‘wolf’ as the
output classification for any image that contains a patch of snow.47

Conversely, it turns out to be rather easy to fool first-generation
image recognition DNNs because they are often not very good at
handling unusual backgrounds and poses. The images used to
train the programs were obtained from different poses and from
many different angles around a more or less vertical axis, but that
axis was oriented fairly consistently with respect to the back-
ground. When that incidental consistency was compromised –
e.g. when objects are manipulated to appear skewed or tilted –
the programs often fail.48

A recent examination of three published structure-based virtual
screening papers is a case in point. Three different benchmarking
data sets had been used to evaluate performance, each composed
of target proteins, known ligands and property-matched ‘decoys’
that were presumed not to bind to the targets. The CNN programs
used classified themquitewell across the rangeof targets, but they
performed almost as well when all information about which pro-
tein was the target was withheld. It turned out that the filters used
to identify candidate decoys had been applied independently, but
that those properties were correlated for the actual ligands in each
case – and that was most of what the DNNs had learned to recog-
nize.49 The rules used to select ‘actives’ and those used to select
‘decoys’ were consistent but fundamentally different, and the
DNN learned the rules – i.e. the selection bias46 – rather than fea-
tures of the protein-ligand complexes that were characteristic of
binding.

4.4 Problems with categorization errors
DNNs require large amounts of data if they are to train effectively,
but the need for the data to also be of very high quality is difficult

to satisfy on a large scale.40 This obviously includes making sure
that individual observations are assigned to the correct category
(e.g. species are correctly identified), but it also means making
sure that the set of categorical labels available are appropriate
to the data of interest. The latter is especially true when it entails
oversimplification of the labels applied to endpoint output
categories.
One kind of over-simplification is illustrated by the decision tree

shown in Fig. 1, where there is an assumption that only one of the
three fungal species can be present and that the plants in ques-
tion must be diseased in some way. Most DNNs, in fact, lack ‘none
of the above’ labels in the training and test sets, though such sit-
uations are quite likely to be encountered in the field. Exceptions
are where the number of label options is small or binary (yes or
no) and the background is very simple or very consistent between
examples or both. Images from insect traps with blank white
backgrounds, for example, work well for automating the assess-
ment of how severe an infestation of the brown planthopper Nila-
parvata lugens (Stal) is.13 There the model picks out images from
the background and determines how likely each is to be
N. lugens. Many researchers make the assumption – often implic-
itly – that multiple labels are exclusive.
Over-simplification can be addressed by training DNNs to

identify multiple labels in an input image. Unfortunately, allow-
ing individual examples to bear multiple labels has indirectly
made it difficult to properly compare performance statistics for
some DNNs to those for other modeling methods. Input images
are usually cropped (‘downsampled’) by the program as part of
the training process, and image labels get ‘refined’ as well.50,51

An image initially labeled as containing ‘a building’ and ‘trees,’
for example, may get relabeled as also containing ‘grass’ and
‘sky’ because the program recognizes that some (sub)images
are similar to images labeled as ‘grass’ or as ‘sky.’ The fact that
these labels were originally omitted reflects the prejudices of
the original human labelers as to which features are important.
The DNN can learn that hierarchy as part of the process and
use it to improve performance, but the opportunity to do so
introduces biases that can distort the meaning of the statistics
obtained for the test set.
Multi-target DNNs are analogs of multi-label image recognition

networks that have been applied to QSAR problems.38 Most nota-
bly, multi-target DNNs won both the Merck Molecular Activity
Challenge (www.kaggle.com/c/MerckActivity) and the Tox21
competition.52 Classical molecular descriptors were used as
inputs in both cases. Researchers at Merck & Co., Inc., analyzed
the source of DNN superiority on the Challenge data and came
to some striking conclusions.53 When a DNN was set up with mul-
tiple outputs, it did as well or better than random forest models
(see the section entitled ‘Decision trees’ earlier) for each of the
15 assay endpoints (‘tasks’), similar to what had been seen in the
Challenge. When the DNN was run on the 15 individual data sets
– i.e. as a single task DNN – performance was comparable across
the endpoints. By looking at combinations of endpoints, they
found that multitask DNNs consistently had an advantage when
multitask problems were addressed simultaneously for correlated
endpoints – e.g. different orexin receptors. This is especially true
when similar molecules are present in the training sets for the
endpoints – an example of ‘transfer learning’: information from
each endpoint is passed to the other, and better performance is
obtained for each. Combining similar training sets and uncorre-
lated endpoints, however, tends to confuse the DNN and reduce
performance.
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A second conclusion of the article also bears noting: the Merck
Activity Challenge models were evaluated against a set com-
posed of the last compounds tested in each assay. The idea is
that such chronological tests sets are representative of the
future compounds that one would like to predict. The assays
had been run at different times, however, so compounds in the
training set for some assays were present in the test set for other,
related assays; the cross-talk from such overlaps also improved
the performance of the multitask DNN. In fact, the difficulty of
constructing suitable test sets for DNNs is now being recognized
as a major challenge for big-data AI in general and for DL in
particular.40,49

4.5 ‘Ground truth’ that is not true
The ‘ground truth’with which DNNs are trained and against which
their performance is measured is based on categorical labels or
values provided by human beings, and the models obtained can-
not really bemore accurate than the data used to train them. They
can appear to be more accurate, however, when that data
includes systematic errors and the modeling technique is power-
ful enough to take them into account. The paper fromwhich Fig. 3
was taken is a case in point. The image labeled as depicting a Las-
peyresia pomonella larva (Fig. 3(g)) is identical to the one shown in
the paper's final figure, where it is categorized as being an exam-
ple of a S. exigua larva, the species shown in Fig. 3(h). This may be
a typographical or data entry error or it may be a case where the
image was accidentally duplicated but assigned to different cate-
gories in different places on the internet.
Regardless, the larva shown probably belongs to neither spe-

cies. The image can be found† at https://www.epicgardening.
com/army-worms/, where the larva is identified as being that of
the fall armyworm S. frugiperda. A larva of the beet armyworm is
shown below it and is labeled as such; that may have been why
the image was miscategorized.
In this study the authors had six experts assign one of their ten

labels to the insect pest images in their test sets and reported the
experts' overall performance statistics as well as how well their
classifications matched the assigned data set categories. Overall
accuracy with respect to the assigned categories ranged from
82 to 96%, whereas they achieved an accuracy of 94% by transfer
learning. All six experts seemed to confuse Laspeyresia pomonella
with S. exigua larvae (depicted in Fig. 3(g, h), respectively) and four
of the six seemed to misclassify the corresponding adult forms
(Fig. 3(j, e), respectively). Two experts misclassified locusts
(Locusta migratoria) as grasshoppers (A. sinensis) in some cases,
as did the CNN.
The DL model was nominally more accurate overall than four of

the six experts because it had much less trouble distinguishing
lepidopterans from each other, but did mistake beet armyworm
adults for blue leaf beetles in some cases. It seems likely, however,
that this reflects at least in part a matter of the neural network
doing a better job of mimicking biases due to systematic internet
miscategorizations by non-experts or in the course of compiling
the data set.
DNNs are powerful modeling tools, and distinguishing

increased ability to capture signal from learning biases and sys-
tematic errors is a moving target. Many of the problems identified
to date have involved selection biases that were not identified
until well after the fact and usually not by the original researchers.

Some major innovations are only a few years old and have yet to
be widely applied to pest management problems, so it is hard to
have a handle on the kinds of biases to watch out for in our
particular area.
The size of the data sets used to train deep neural nets pre-

cludes the sort of manual curation54 needed to avoid the
problem, but it should be possible to thoroughly curate a rep-
resentative test set big enough to provide something close to
‘ground truth.’ Comparing DNN performance on the ‘raw’ test
set and the curated one will at least make it possible to sepa-
rate spurious performance ‘improvements’ due to fitting sys-
tematic errors from those due to genuine increases in
generalizability.

5 CONCLUSIONS
The degree to which DNNs are able to compete effectively with
human judgement is likely to increase substantially in the near
future, but cases where they leverage or complement human
skills rather than replacing them are likely to be more important
in the long run. Indeed, the experience in oncology screening is
that combinations of machine and human intelligence do better
than either alone, because each makes different kinds of mis-
takes.55 This is not surprising, because mimicking human decision
making is not the same as reproducing it. Indeed, we probably
should not want it to be, because complementary systems pro-
vide more opportunity for synergy.56 That will be as true in pest
management science as in any other human endeavor. Certainly
a tool that can be used to reduce the tedium of scoring safety in
the laboratory or weed control in the glasshouse or insect damage
in the field will be welcome, and the increase in raw data on pes-
ticide activity and specificity that would result is likely to benefit
more classical modeling efforts (see Box 1). That cannot happen,
however, until a great deal of data has been accumulated from
expert human scoring and careful curation to remove systematic
errors and biases. Even then, the main benefit will probably come
via transfer learning between pest species and across assay for-
mats: the number and diversity of pest control compounds tested
is likely to remain the limiting factor when it comes to applying DL
approaches to QSAR analysis.
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