

Quantitative Systems Pharmacology (QSP) Diffuse Large B Cell Lymphoma (DLBCL) Model

- · Predict efficacy for late-stage therapeutics under development, including CAR-T therapy and combination therapies
- · Compare different therapeutics with the same or similar targets or against existing treatments
- Determine patient subgroups of interest based on baseline patient features or response to specific lines of therapy
- Find saturating doses of novel immunologic therapeutics

Key Features

- Convenient, efficient, and thorough generation and calibration of virtual populations
- Includes both qualitative and quantitative data during model training
- Represents clinical trials with specific entrance
- Plot and analyze simulation results in the same platform
- Automatically visualize connections between model components
- Export data to other programs for ad hoc analyses

Sound Science

Clinical data

constrains the relative contribution of distinct pathways to tumor growth and suppression via inclusion of numerous therapeutic classes (eg, immunomodulatory drugs, combination chemotherapy such as R-CHOP, etc.)

Generates

virtual populations that include inter-patient variability in pathophysiology as well as clinical endpoints

Includes

detailed interactions between the tumor in the bone marrow and immune response

Considers

tumor geometry in order to accommodate endpoints depending on tumor size and shape

Incorporates

cellular and biochemical processes across multiple scales, from cytokine concentrations to clinical responses

oncological processes are explicitly represented, including IL2-based expansion of both endogenous and CAR-T cells

Connect with us: 🖪 💟 in 🗖

