

Integrating Human Biomimetic Liver Microphysiology System with Quantitative Systems Toxicology Modeling to Predict DILI

Kyunghee Yang

Discovery Toxicology 2024

Agenda

- Quantitative systems toxicology (QST) modeling of DILI
 - Liver safety assessment of small molecules using DILIsym
- Application of QST modeling and liver microphysiology system in the liver safety assessment of biologics
 - Tocilizumab
 - Immune checkpoint inhibitors
- Conclusions and perspectives

QST Models Predict Toxicity via the Intersection Between Underlying Biochemistry, Compound Exposure, and Toxicity Mechanisms

The DILI-sim and RENAsym Consortia are Partnerships Between DILIsym Services and Pharmaceutical Companies to Minimize Organ Injury

Current DILI-sim / RENAsym Members

For a comprehensive review of progress, see *Watkins 2020, Current Opinion in Toxicology (23-24:67-73)*

- **Overall Goals**
 - Improve patient safety
 - Reduce the need for animal testing
 - Reduce the costs and time necessary to develop new drugs

History

- Officially started in 2011
- 21 major pharmaceutical companies have participated
- Members have provided compounds, data, and conducted experiments to support effort
- Over \$10 million invested in project
- <u>At least 30 cases of use for regulatory</u> <u>purposes</u>
- Over 30 publications

DILIsym Software Overview

- Multiple species: human, rat, mouse, and dog
 - Population variability
- The three primary acinar zones of liver represented
- Essential cellular processes represented to multiple scales in interacting sub-models
- Over 90 detailed representations of validation compounds with >80% success and zero false positive predictions
- Single and combination drug therapies

St SimulationsPlus

6

DILIsym Software Overview

- Multiple species: human, rat, mouse, and dog
 - Population variability
- The three primary acinar zone of liver represented
- Essential cellular processes represented to multiple scales in interacting sub-models
- <u>Over 90</u> detailed representations of validation compounds with >80% success and <u>zero false positive</u> <u>predictions</u>
- Single and <u>combination drug</u> therapies

DILIsym Software Overview

- Multiple species: human, rat, mouse, and dog
 - Population variability
- The three primary acinar zones of liver represented
- Essential cellular processes represented to multiple scales in interacting sub-models
- Over 90 detailed representations of validation compounds with >80% success and zero false positive predictions
- Single and combination drug therapies

DILIsym Utilizes Various Data Types to Inform Decisions

QST Modeling of CGRP Receptor Antagonists to Assess Liver Safety

- DILIsym simulations performed with telcagepant using clinical trial dosing protocols
 - Goal is to recapitulate clinically observed toxicity

- DILIsym simulations performed with rimegepant, zavegepant, atogepant, and ubrogepant
 - Goal is to predict likelihood of toxicity

In Vitro Mechanistic Toxicity Signals Observed for Telcagepant, Rimegepant, Zavegepant, Atogepant, and Ubrogepant

DILIsym Toxicity Parameters for Telcagepant, Rimegepant, Zavegepant, Atogepant, and Ubrogepant

Machaniam	Deveneter	11	DILIsym Parameter Value							
Mechanism	Parameter	Unit	DILIsym Parameter ValueInitTelcagepant - HighTelcagepant - LowRimegepantZavegepantAtogepantμM3,4703,4703,470No inhibition38,170μM1.89-1.89No inhibition0.1nensionless0.45-0.45No inhibition0.2mMNo effectNo effectNo effect1,600No effectnensionlessNo effectNo effectNo effect2No effect	Atogepant	Ubrogepant					
Mitochondrial Dysfunction	Coefficient for ETC inhibition 1	μΜ	3,470	3,470	3,470	No inhibition	38,170	Not used		
	Coefficient for ETC Inhibition 3	μΜ	1.89	-	1.89	No inhibition	0.1	4,217		
	Max inhibitory effect for ETC inhibition 3	dimensionless	0.45	-	0.45	No inhibition	0.2	0.4		
	Uncoupler 1 effect Km	mM	No effect	No effect	No effect	1,600	No effect	15,300		
	Uncoupler 1 effect Vmax	dimensionless	No effect	No effect	No effect	2	No effect	22.5		
	Uncoupler 1 effect Hill	dimensionless	No effect	No effect	No effect	1.5	No effect	4.3		
Oxidative Stress	RNS/ROS production rate constant 1	mL/nmol/hr	3.5 x 10⁻⁴	3.5 x 10⁻⁴	3.5 x 10⁻⁴	No ROS production	3.41 x 10 ⁻⁴	1.65 x 10 ⁻⁴		
Bile Acid Transporter Inhibition	BSEP inhibition constant	μΜ	19.0	19.0	27.2	341	144.2	No inhibition		
	BSEP inhibition alpha value	dimensionless	4.32	4.32	Competitive	1.368	0.64	No inhibition		
	NTCP inhibition constant	μΜ	No inhibition	No inhibition	No inhibition	No inhibition	No inhibition	No inhibition		
	MRP4 inhibition constant	μΜ	42.4	42.4	No inhibition	No inhibition	42	75.3		

CGRP Receptor Antagonists Modeling Results

- DILIsym modeling retrospectively predicted liver toxicity for telcagepant consistent with clinical experiences
 - The mechanisms involved in the predicted liver injury for telcagepant were mainly inhibition of bile salt transport and mitochondrial ECT inhibition
- DILIsym **prospectively** predicted liver safety for rimegepant, zavegepant, atogepant, and ubrogepant at clinically relevant doses
 - Liver safety confirmed by clinical trials, validating model prediction

Peak ALT x ULN

Peak ALT x ULN

Liver Safety of Ubrogepant Confirmed in Clinical Trials

Original Article

Safety and tolerability of ubrogepant following intermittent, high-frequency dosing: Randomized, placebo-controlled trial in healthy adults

Peter J Goadsby¹, Stewart J Tepper², Paul B Watkins³, Girma Ayele⁴, Rosa Miceli⁴, Matthew Butler⁴, Lawrence Severt⁴, Michelle Finnegan⁴, Armin Szegedi⁴, Joel M Trugman⁴ and Abhijeet Jakate⁴

> No significant liver signals shown at one of the simulated dosing protocols: 100 mg QD, 2 days on, 2 days off, for 56 days (28 total doses)

International 5 Headache Society

Cephalalgia 2019, Vol. 39(14) 1753–1761 © International Headache Society 2019

Artide reuse guidelines: sagepub.com/journals-permissions DOI: 10.1 177/0333102419869918 journals.sagepub.com/home/cep

SAGE

Table 3. Hepatic laboratory parameters.						
	Placebo (n = 260)	Ubrogepant 100 mg (n = 256)				
ALT, U/L	n=258	n = 256				
Baseline, mean (SD)	20.5 (7.2)	21.1 (9.1)				
End of trial, mean (SD)	21.7 (7.7)	21.3 (8.7)				
Change from baseline, mean (SD)	1.2 (7.4)	0.1 (8.4)				
Post baseline \ge 3 \times ULN, n (%)	3 (1.2)	2 (0.8)				

Agenda

- Quantitative systems toxicology (QST) modeling of DILI
 - Liver safety assessment of small molecules using DILIsym
- Application of QST modeling and liver microphysiology system in the liver safety assessment of biologics
 - Tocilizumab
 - Immune checkpoint inhibitors
- Conclusions and perspectives

BIOLOGXsym is Being Developed Leveraging Mechanistic Data from In Vitro Human Liver Microphysiology System

- BIOLOGXsym is a mechanistic, mathematical model which is being developed to identify biologics-induced liver injury liabilities in new biologic drug candidates and predict clinical liver injury outcomes
 - Represents mechanistic pathways specific to biologics such as receptormediated indirect responses and target-mediated effects
 - <u>Collaborative efforts between DILIsym Services and University of</u>
 <u>Pittsburgh Drug Discovery Institute (UPDDI) were made to leverage data</u>
 <u>from mechanistic experiments in a human liver biomimetic (LAMPS)</u>
- Phase 1 development supported by NIH Small Business Innovation Research (SBIR) grant was completed successfully
 - A prototype BIOLOGX sym model was developed
 - Two exemplar compounds, GGF2 and tocilizumab, were represented in BIOLOGXsym to show proof-of-concept predictions of BILI response
 - Phase 2 SBIR grant for continued development of BIOLOGXsym has been awarded
 - Twelve exemplar compounds including immune checkpoint inhibitors are being tested

The Liver Acinus Microphysiology System (LAMPS) Provides Mechanistic Inputs for BIOLOGXsym

- Organ-on-a-chip microphysiological systems have emerged as a powerful platform to mimic a particular human tissue, organ, and multiple organs for drug discovery and drug development
- LAMPS is a human biomimetic liver model that includes four key liver cells
 - Hepatocytes, stellate cells, liver sinusoidal endothelial cells, Kupffer cells
 - Structurally organized as a liver sinusoidal unit; 10-14 day functionality
 - Recapitulates periportal to perivenous oxygen and metabolic zonation

The Liver Acinus Microphysiology System (LAMPS) Provides Mechanistic Inputs for BIOLOGXsym

S+ SimulationsPlus

Frequent Mild Liver Injury Associated with Tocilizumab

population

- Tocilizumab (TCZ), a humanized mAb to IL-6R, approved for various autoimmune or inflammatory diseases, is associated with modest ALT elevations
- Meta-analysis including five phase 3 studies demonstrates relatively frequent ALT elevations >1x ULN but less frequent >3x or >5x ULN
 - For patients undergoing dose reduction, most continued therapy
- Relatively rare case studies identified for severe liver injury, sometimes after months to years of TCZ treatment

	Controlled, double-blind study population					
	Tocilizumab 8 mg/kg monotherapy, % (n) n = 288	Methotrexate (control), % (n) n = 284	Tocilizumab 4 mg/kg + DMARDs, % (n) n = 774	Tocilizumab 8 mg/kg + DMARDs, % (n) n = 1,582	DMARD monotherapy, % (n) n = 1,170	Tocilizumab, % (n/n) n = 4,009 ^c
ALT, ^a n = normal at baseline	n = 269	n = 269	n = 706	n = 1,465	n = 1,080	
> 1-3× ULN > 3-5× ULN > 5× ULN	33.8 (91) 1.1 (3) 0.7 (2)	320 (86) 26 (7) 1.1 (3)	42.8 (302) 4.0 (28) 1.0 (7)	45.9 (672) 4.3 (63) 1.4 (20)	19.1 (206) 0.8 (9) 0.3 (3)	57.3 (2,112/ 3,696) 7.2 (267/3,696) 2.2 (83/3,696)
AST, ^a n = normal at baseline	n = 283	n = 269	n = 743	n = 1,502	n = 1,123	
> 1-3× ULN > 3-5× ULN > 5× ULN	20.8 (59) 0.4 (1) 0.7 (2)	24.9 (67) 1.1 (3) 0.4 (1)	32.4 (241) 0.9 (7) _	38.8 (583) 1.5 (23) 0.2 (3)	14.5 (163) 0.3 (3) 0.1 (1)	51.4 (1,961/ 3,818) 2.6 (98/3,818) 0.6 (22/3,818)
Dose held ^b Discontinued	8.0 (23) 0.3 (1) ^b	9.9 (28) 1.4 (4) ^b	2.5 (19) 1.3 (10) ^b	2.5 (39) 1.3 (21) ^b	0.7 (8) 0.2 (2) ^b	10.3 (413/4,009) 2.3 (91/4,002)

Table 6 Changes in ALT/AST values from normal at baseline to highest value in the all-control and in the all-exposed

ALT, alanine aminotransferase; AST, aspartate aminotransferase; DMARD, disease-modifying antirheumatic drug; ULN, upper limit of normal. ^aPercentages are based on number of patients with normal ALT (or AST) at baseline. ^bPercentages are based on total treatment-group sample size. ^cExcluding patients with missing values.

Schiff 2011

LAMPS Data Indicated Tocilizumab-Induced Oxidative Stress

- Tocilizumab was tested at 1.6 µM and 5 µM in the LAMPS models under continuous media flow for 10 days
 - 1.6 μM is the human Cmax at the IV dose of 8 mg/kg
- Tocilizumab significantly increased production of RNS/ROS
 - Not reversed by co-incubation with IL-6
- Metabolomics profiling of the LAMPS secretome showed persistent and significant alterations in several metabolic markers of oxidative stress
- Tocilizumab did not significantly change bile acid handling and mitochondrial function in LAMPS assays

BIOLOGXsym Simulations Recapitulated Clinically Observed Modest ALT Elevations by Tocilizumab

- Tocilizumab-mediated hepatotoxicity was simulated within BIOLOGXsym by integrating:
 - Tocilizumab clinical exposure which as simulated by PBPK modeling using GastroPlus (i.e., IV 8 mg/kg Q2 weeks)
 - Tocilizumab-mediated oxidative stress parameters optimized to the LAMPS data
 - Tocilizumab-mediated inhibition of major downstream effects of IL-6 signaling (i.e., hepatocyte regeneration, macrophage recruitment, CYP suppression)
 - Population variability in a small SimCohorts (N=4)
- Tocilizumab proof-of-concept simulations with clinical dosing protocol predicted modest ALT elevations within ~2 weeks of treatment initiation, consistent with clinical data
 - Attributed to tocilizumab-mediated oxidative stress

Frequent Mild Liver Toxicity Signals During Ipilimumab or Nivolumab Administration

- High doses of ipilimumab (anti-CTLA-4 mAb) demonstrate frequent, mild (grade 1-2) and severe (grade 3+) liver adverse events
 - Lower dose ipilimumab has less frequency of hepatic adverse events
 - Some evidence for dose-dependent ipilimumab-induced adverse events (Wolchok 2010)
- Nivolumab (anti-PD-1 mAb) also induces frequent mild liver toxicity signals
 - Some ALT elevations seen at all dose levels, but severe reactions relatively rare (NCT00730639, not shown here)
 - Case studies identified for severe injury ALT profiles (Matsubara 2018, Imoto 2019, Imafuku 2017)

Study details		Any-grade adverse events (grade ≥3 adverse events)								
Study	Dose (n)	Diarrhoea	Colitis	Pulmonary	Rash	Neurological	Endocrinopathy	Hepatic	Renal	
Ipilimumab										
EORTC 18071 (ref. ^{<u>17</u>)}	10 mg/kg, 3-weekly (471)	41.2% (9.8%)	15.5% (8.2%)	_	34.2% (1.1%)	4.5% (1.9%)	37.8% (7.8%)	24.4% (10.9%)	-	
Hodi et al. ¹⁶⁶	3 mg/kg, 3-weekly (131)	27.5% (4.6%)	7.6% (5.3%)	_	19.1% (0.8%)	-	7.6% (3.8%)	3.8% (0%)	-	
Nivolumab										
CheckMate 066 (ref. ²¹)	3 mg/kg, 2-weekly (206)	16% (1%)	1% (0.5%)	1.5% <mark>(</mark> 0%)	15% (0.5%)	-	7.3% (1%)	3.4% (1.5%)	1.9% (0.5%)	
CheckMate 057 (ref. ^{<u>167</u>)}	3 mg/kg, 2-weekly (287)	8% (1%)	1% (0.3%)	4.9% (1.4%)	9% (3.5%)	0.3% (0.3%) ^a	10.5% (0%)	10.8% (1.4%)	2% (0%)	

Martins 2019

LAMPS Assays Show Synergistic Toxicity Signals for Ipilimumab and Nivolumab

- Ipilimumab (80 and 300 µg/mL) and nivolumab (132 and 475 µg/mL) were tested in the LAMPS models under continuous media flow for 10 days
 - 80 and 300 μg/mL are human Cmax values at the IV dose of 3 and 10 mg/kg ipilimumab, respectively
 - 132 and 475 µg/mL are human Cmax values at the IV dose of 3 and 10 mg/kg nivolumab, respectively
- Synergistic LDH increase was observed with administration of ipilimumab + nivolumab when compared to monotherapy, consistent with clinical findings

LAMPS Assays Show Hepatocyte Stress Signals for Ipilimumab and Nivolumab

- LAMPS experimental outputs demonstrate early hepatocyte stress signals and mechanisms for ipilimumab and nivolumab
- Ipilimumab significantly decreased mitochondrial function and bile efflux
- Nivolumab significantly increased ROS and decreased mitochondrial function and bile efflux
- Bevacizumab (negative control) did not show any significant mechanistic signals

•

Dav

Chip replicate — Group average T ± SEM (error propagated)

LAMPS Assays Show Hepatocyte Stress Signals for Ipilimumab and Nivolumab

- LAMPS data will be incorporated in BIOLOGXsym to represent hepatocyte stress signals, which set the stage for a potential adaptive immune attack by altering the liver micro-environment to be less tolerogenic and more inflammatory
 - Hypothesis: immune checkpoint inhibitors can induce low-level hepatocyte stress (e.g., indirect effects via Kupffer cells that express PD-1 and CTLA-4 and/or off-target effects) and sensitize liver to T cell effects
 - LAMPS provides mechanistic insights underlying hepatocyte stress/liver sensitization

Uetrecht et al. (2021) Int J Mol Sci

A Staged Approach for QST Modeling of Immune Checkpoint Inhibitor-Mediated Hepatotoxicity

- 1. Develop and validate PBPK models of ipilimumab and nivolumab
 - Estimate plasma and liver concentrations of ipilimumab and nivolumab
- 2. Identify direct hepatocyte stress mechanisms from LAMPS assays
- 3. Simulate hepatic responses based on direct hepatocyte stress signals
 - Does not include target-mediated effects yet
- 4. Simulate hepatic responses combining direct hepatocyte stress mechanisms and targetmediated mechanisms for adaptive immune systems
 - Ipi or nivo amplifies CD8+ T cell response
 - Ipi increases effector CD8+ T cell prolif, mediator production, cytotoxicity
 - Nivo increases exhausted CD8+ T cell prolif, mediator production, cytotoxicity

CD8+ T Cell Representation Is Being Developed in BIOLOGXsym to Investigate Requirements for T cell Cytotoxicity to Explain ICI Hepatitis

Not all modeled links shown in diagram, for visual clarity

Agenda

- Quantitative systems toxicology (QST) modeling of DILI
 - Liver safety assessment of small molecules using DILIsym
- Application of QST modeling and liver microphysiology system in the liver safety assessment of biologics
 - Tocilizumab
 - Immune checkpoint inhibitors
- Conclusions and perspectives

Conclusions and Perspectives

- In vitro human microphysiology systems can further improve our mechanistic understanding about hepatotoxicity mediated by biologics
- QST modeling that integrates known biochemistry/physiology, in vitro mechanistic data, and dynamic exposure can help elucidate DILI mechanisms and evaluate hepatotoxicity of biologics as well as small molecules

Acknowledgements

QSP Solution, Simulations Plus Inc.

National Institute of Health (NIH) R43TR003535 & R44 R44TR003535

University of Pittsburgh Drug Discovery Institute

DILIsym & BIOLOGXsym Scientific Advisory Board

- Dr. Paul B Watkins
- Dr. Neil Kaplowitz
- Dr. Frank Sistare

- Dr. Jack Uetrecht
- Dr. Robert Roth
- Dr. David Pisetsky

