Abstract #412

Abstract

Drug-induced liver injury (DILI) is one of the leading causes of drug development failures and drug withdrawals. DILIsym[®] is being developed to identify and mitigate DILI risk through in silico analysis of compounds. The DILlsym[®] representation of the innate immune response was initially based on acetaminophen (APAP) data. Carbon tetrachloride (CCI_{4}), a compound with hepatotoxic similarities to APAP, was simulated for further evaluation of the innate immune response to liver injury. DILlsym[®] simulation results for CCl₄ pharmacokinetics were consistent with published PK data. CCl₄ is generally thought to induce hepatotoxicity via a free radical metabolite which drives lipid peroxidation. However, when CCl₄ was simulated via DILIsym[®], free radical generation and lipid peroxidation to levels consistent with the public literature were insufficient to drive hepatotoxicity. Analysis demonstrated that saturation of the metabolic pathway generating the free radical limited the extent of lipid peroxidation and thus the extent of cell death. In comparison, the APAP metabolic pathway has a greater dynamic range, resulting in higher levels of lipid peroxidation and cell death. Papers were identified in which lipid peroxidation independent mechanisms of cell death were suggested, including lipid peroxidation independent mitochondrial toxicity. The CCl₄ representation was modified to induce mitochondrial electron transport chain (ETC) inhibition. Concurrent induction of lipid peroxidation and ETC inhibition mechanisms permitted reconciliation of simulated hepatotoxicity with published data. For example, >3x ALT elevations were simulated at doses <50 mg/kg, with the highest ALT elevations (>1000 U/L) at doses >100 mg/kg in mice. Simulated CCI_4 was then used to evaluate and further refine the innate immune response. In summary, quantitative analysis of CCl₄ in DILIsym[®] not only permitted evaluation of the innate immune response, but also suggested a limitation in the putative primary mechanism of hepatotoxicity.

Introduction

DILIsym[®] is a multi-scale mechanistic model of druginduced liver injury (DILI). The model contains a physiologically-based pharmacokinetic model of drug distribution and metabolism in the liver and several mechanisms of toxicity. Acetaminophen (APAP) has been used as an exemplar compound for reactive metabolite mediated oxidative stress and hepatotoxicity based on the wealth of available data.

The immune response has been implicated in various forms of DILI. As a first step to incorporating immune responses in DILI, macrophage participation in APAP overdose has been added to DILIsym[®]. To increase confidence that the macrophage model was adaptable to other compounds, carbon tetrachloride (CCI $_{4}$) was tested. Similar to APAP, the liver metabolizes CCl₄ to a reactive metabolite (RM). RMgenerated oxidative stress is the putative primary mechanism of hepatotoxicity. There are also published data illustrating the recruitment of the immune response in CCI₄ hepatotoxicity.

We re-parameterized the DILIsym[®] compound physiologically based pharmacokinetic (PBPK) model and compound metabolism model to represent CCl₄. We selected **RM-induced oxidative stress as the mechanism of** hepatotoxicity and then ran simulations to explore the relationship between CCI₄ hepatotoxicity and recruitment of the immune response.

Quantitative Modeling Uncovers a Potential Limitation in the Putative Mechanism of CCl₄ Hepatotoxicity Lisl K. M. Shoda; Scott Q. Siler; Paul B. Watkins; Brett A. Howell

The Hamner - UNC Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC

THE HAMNER

Institute for Drug Safety Sciences

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

ts	Methods
	 We simulated mice given single doses of CCI₄ orally or intraperitoneally in aqueous or oil-based vehicle
	 CCI₄ tissue distribution, fraction unbound, and clearance were estimated from the literature [e.g., 1-3] and tuned to match published time course profiles [1] (Fig 1c)
	 CCl₄ metabolism was simplified to represent generation of the reactive metabolite (RM), trichloromethyl peroxy radical, implicated in CCl₄ hepatotoxicity [4]
	 RM generation was governed by V_{max} and K_m values, taken from the published literature [1]
	 Suicide inhibition of the CYP450 pathway was simplified to represent 95% inhibition after 1 hour exposure in mice [1]
ation , 9]	 The same approach was taken for the exploration of rat CCI₄ responses. <i>Rat simulations not shown</i>.
	Results and Analysis
city, ГС)	 In initial simulations, CCI₄-generated oxidative stress was unable to reproduce dose-dependent hepatotoxicity (Fig 1a, b)
	 Analysis demonstrated that hepatotoxicity was limited by saturation of CCI₄ metabolism (Fig 1e)
	 Use of alternate V_{max} and K_m values for CCl₄ metabolism [5] led to saturation of RM generation at a lower level and did not change the hepatotoxicity outcomes (Fig 1f)
	 Further literature review suggested the possibility of direct mitochondrial effects [6, 7]
<u> </u>	 CCl₄-mediated mitochondrial dysfunction, i.e., electron transport chain (ETC) inhibition, permitted the simulation of CCl₄ hepatotoxicity (Fig 3a)
	 Simulated macrophage accumulation was consistent with experimental observations [8, 9] (Fig 3b)
-	Conclusions
	 Quantitative modeling and simulation of CCl₄ suggests saturation of CCl₄ metabolism could limit RM-mediated oxidative stress and resultant hepatotoxicity
	 Data on mitochondrial liability may indicate an underappreciated mechanism of toxicity
	 Once CCl₄ dose-dependent hepatotoxicity was simulated, a reasonable accumulation of macrophages could be confirmed.
	Acknowledgements
	Funding provided by members of the DILI-sim Initiative. See www.dilisym.com for information on the Initiative.
	References
	 Fisher, J. et al. PBPK modeling of the metabolic interactions of carbon tetrachloride and tetrachloroethylene in B6C3F1 mice. Environ. Toxicol. Pharmacol. 16, 93–105 (2004). Endo, S. & Goss, KU. Serum albumin binding of structurally diverse neutral organic compounds: data and models. Chem Res. Toxicol. 24, 2293–2301 (2011). Sanzgiri, U. Y., Srivatsan, V., Muralidhara, S., Dallas, C. E. & Bruckner, J. V. Uptake, distribution, and elimination of carbon tetrachloride in rat tissues following inhalation and ingestion exposures. Toxicol. Appl. Pharmacol. 143, 120–129 (1997). U.S. Environmental Protection Agency. TOXICOLOGICAL REVIEW OF CARBON TETRACHLORIDE (CAS No. 56-23-5). (2016 at http://www.epa.gov/iris/toxreviews/0020tr.pdf Thrall, K. D. et al. Comparative metabolism of carbon tetrachloride in rats, mice, and hamsters using gas uptake and PBPR
t to	modeling. J. Toxicol. Environ. Health A 60, 531–548 (2000). 6. Albano, E. et al. Mechanisms responsible for carbon tetrachloride-induced perturbation of mitochondrial calcium homeostasis. FEBS Lett. 192, 184–188 (1985). 7. Knockaert, L. et al. Carbon tetrachloride-mediated lipid peroxidation induces early mitochondrial alterations in mouse live

Lab. Investig. J. Tech. Methods Pathol. 92, 396–410 (2012). 8. Minamino, T. et al. Thromboxane A(2) receptor signaling promotes liver tissue repair after toxic injury through the

enhancement of macrophage recruitment. Toxicol. Appl. Pharmacol. 259, 104–14 (2012). 9. Karlmark, K. R. et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatol. Baltim. Md 50, 261–274 (2009).