Mechanistic Representation of NAG Release in Relation to Renal Proximal Tubular Cellular Injury

Nader Hamzavi¹, Pallavi Bhargava¹, Simone H. Stahl², Brett A. Howell¹, and Jeffrey L. Woodhead¹

¹Simulations Plus company, Quantitative Systems Pharmacology Business Unit, Research Triangle Park, NC, USA

²Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK CONTACT INFORMATION: nader.hamzavi@simulations-plus.com

INTRODUCTION

- > Novel Acute kidney injury (AKI) biomarkers enhance disease understanding and aid timely interventions.
- > N-acetyl-beta-D-glucosaminidase (NAG) is a novel biomarker which is released in the urine due to proximal tubular damage¹.
- > While elevated levels of NAG in urine have been associated with renal tubular cell breakdown, the mechanistic underpinnings of NAG release remain poorly understood.

OBJECTIVE

> The aim of this study is to investigate the relationship between NAG release and potential mechanisms of proximal tubular injury, and to identify a responsible mechanism to guide NAG release during AKI.

METHODS

- > We developed a mathematical model of NAG release from proximal tubule cells (PTCs) within the framework of RENAsym, a quantitative systems toxicology model of drug-induced AKI.
- > The model was designed to represent urinary NAG increase as a result of cellular necrosis or sublethal injury in the form of brush border loss.
- > In RENAsym, ATP decline results in various cellular injury including forms of microfilament disruption, brush border loss and cellular necrosis.
- > NAG release was simulated using a driving signal from either necrosis or microfilament disruption and parameterized using observed urinary NAG in rats treated with cisplatin² and Cyclosporine A (CsA)³.

 \succ Predicted uNAG for rats treated with 5 mg/kg cisplatin with the optimized model is within the wide range of observed data ^{3,6-7}, peaked on day 4 and resolved within 48-72 hours

MECHANISTIC MODEL OF NAG RELEASE

> Two hypotheses for NAG release were investigated:

- > NAG shedding driven by microfilament disruption and brush border loss⁴ (microfilament disruption already represented in
- RENAsym⁵)
- > NAG shedding driven by cellular death in the form of necrosis¹

RESULTS

> Data shows that urinary NAG (uNAG) peaked on day 5 in rats treated with 5 mg/kg cisplatin²

 \succ In our model, when uNAG release is connected to microfilament disruption, simulated uNAG peaks around day 10 with a slow decay post-treatment with 5 mg/kg cisplatin

 \succ However, when uNAG release is driven by necrosis, simulated uNAG peak time occurs on day 5 consistent with observations

> The model was then calibrated to AstraZeneca's biomarker data instead of uNAG in cisplatin-induced AKI rats

Simulated uNAG peak time occurs on day 5 or 6 with maintained elevation until day 14 after administration of daily dosing of CsA into rats for two weeks

 \succ In this urinary NAG release model, cellular necrosis is found to be the correct mechanism to drive NAG release, and to successfully reproduce the NAG time course during drug-induced AKI.

> High mortality rate in rats treated with 5 mg/kg cisplatin raises doubts in biomarker data collected after day 5 post-treatment with cisplatin.

 \succ A virtual population model can effectively capture interpatient variability by varying pathophysiologic combining and parameters across a spectrum of baseline individuals.

¹ Hong, Ching Ye, and Kee Seng Chia. "Markers of diabetic nephropathy." Journal of Diabetes and its Complications 12.1 (1998): 43-60. ² Weichert-Jacobsen, K J et al. "Direct Amifostine Effect on Renal Tubule Cells in Rats" Cancer research vol. 59,14 (1999): 3451-3. ³ "Nephrotoxicity biomarker evaluation after repeat dose oral administration of cyclosporine A in male rats" AstraZeneca. ⁴ Vaidya VS, Ferguson MA, Bonventre JV. Biomarkers of acute kidney injury. Annu Rev Pharmacol Toxicol. 2008;48:463-93. ⁵ Hamzavi, N et al. "Mechanistic modelling of the linkage between proximal tubule cell sublethal injury and tubular sodium reabsorption impairment", J Am Soc Nephrol 30, 2019: 789. ⁶ Gemba, M et al. "Effect of N-N'-diphenyl-p-phenylenediamine pretreatment on urinary enzyme excretion in cisplatin nephrotoxicity in rats" Japanese journal of pharmacology vol. 46,1 (1988): 90-2. ⁷ Gautier, Jean-Charles et al. "Evaluation of novel biomarkers of nephrotoxicity in two strains of rat treated with Cisplatin" Toxicologic pathology vol. 38,6 (2010): 943-56.

CONCLUSION

 \succ The model could recapitulate the timing of observed NAG levels in cisplatin-induced injury in rats, and NAG kinetics in CsAinduced injury in rats.

REFERENCES

