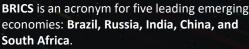
Generics for emerging markets and beyond

Frederico Martins, PhD

Principal Scientist & Scientific Lead – South America

Please note: this presentation, including questions from the audience, is being recorded and may be made available.

Harnessing the Power of Emerging Markets: A Pharmaceutical Industry Opportunity


Emerging markets represent a great opportunity for the pharmaceutical industry.

BRICS, followed by MIST, are leading economies of emerging markets.

Sales of pharmaceutical markets in BRICS and MIST countries doubled in 5 years and reached 20% market share

MIST is an acronym for: Mexico, Indonesia, South Korea, and Turkey

Empowering Emerging Economies: The Benefitsof Generic Medications

The genesis of branded generics in emerging markets is a pragmatic response to some hard local market realities.

Affordability and Cost-Effective: Generics are more affordable and accessible to a wider range of patients.

Boost to Local Economy: The production and sale of generic drugs can provide a boost to the local economy in emerging countries, creating jobs and contributing to economic growth.

Overcoming Hurdles to Successfully Launch Generic Medications in Emerging Markets

 The market for generic medications is highly competitive, with numerous companies vying for a share of the growing demand for affordable alternatives to brandname drugs

Enhance contracting capabilities

Create high-volume sales opportunities to overcome low margins on off-patent products

Ability to manage Accounts Receivables and credit risk

Establish sustained local capabilities with strong local talent

Local manufacturing is a show of goodwill to local authorities

High demand for local talent is making hiring/retention expensive

Bolster the sales force with multi-channel engagement

Create trust and recognition among healthcare providers

Provide lower-cost solutions for lower priced markets

Key Success Factors with Branded Generics in Emerging Markets

Engage in portfolio marketing

Physician engagement and brand equity are critical for success

Enable sales teams to promote multiple products with physicians

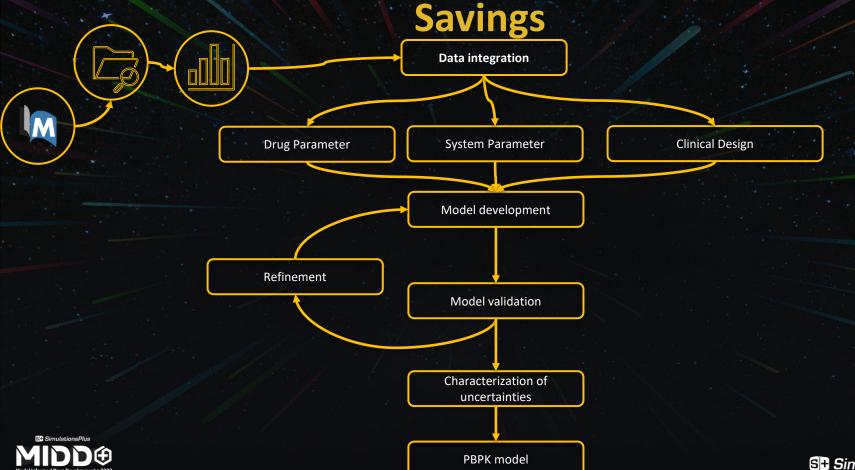
Recalibrate regulatory affairs

Ability to file for the fastest route for approval to outpace generics

Know how to navigate government relationships

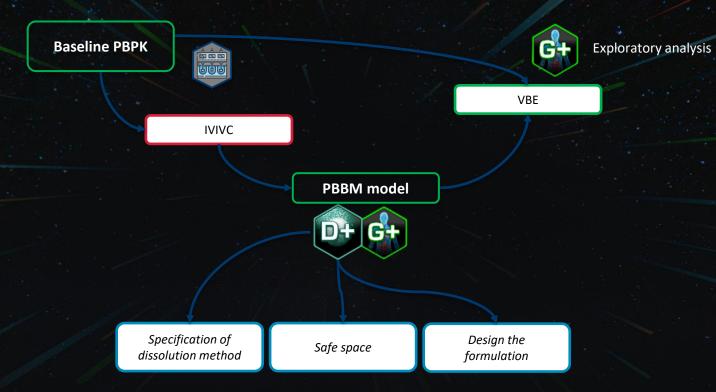
Revolutionizing Generic Drug Development with Model-Informed Approaches

Simplify the Generic Drug Product Development Process



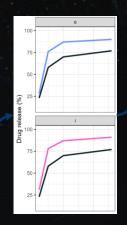
Three tiers of PBBM models

- Tier 1 Metoprolol, Ibuprofen, Bupropion
- Tier 2 Atorvastatin, Valsartan, Zolpidem,
 Ranitidine, Metformin, Repaglinide,
 Methylphenidate
- Tier 3 Rivaroxaban, Apixaban

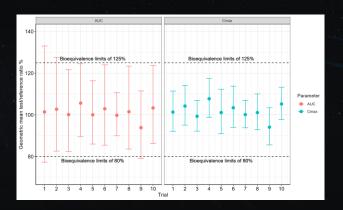

Achieving Success through Quality and Time

St SimulationsPlus

Achieving Success through Quality and Time Savings



How does Plug and Play work



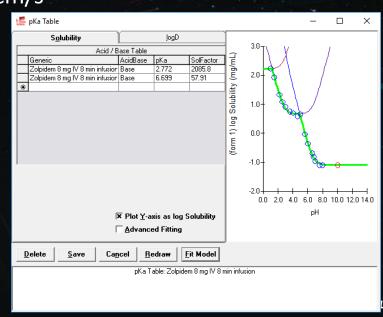
vBE

What are the benefits of using Plug and Play?

- Transform your analysis into a high-performance operation and reduce analysis time while increasing result accuracy.
- Reduce time and costs with data curation.
- Reduce costs and time with efficient training and professional development.
- Increase the efficiency of your R&D program.
- All models are qualified and pre-reviewed by experienced regulatory professionals to increase chances of success in submissions to regulatory agencies

Zolpidem ODT

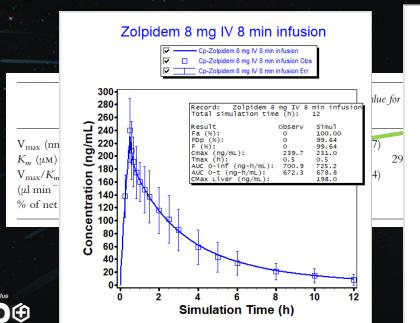
Objective: Predict likelihood of clinical trial outcome (BE between test and reference product)



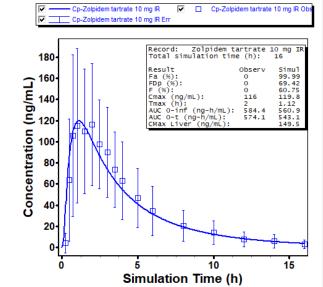
Zolpidem hemitartrate – Physico-chemical and biopharmaceutical properties

- $MW = 764.88 \text{ g.mol}^{-1} (=307.4 \text{ for active moiety})$
- Salt to base ratio = 1.24
- Caco2 scaled to human jejunal Peff = 4 x10⁻⁴cm/s
- fu,p = 7.5%, B:P = 0.76
- Log P= 2.42
- Weak base
 - pKa = 6.18
- Aqueous solubility
 - pH dependent
 - S₀ = 0.08 mg/mL @ pH 10

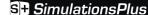
Zolpidem hemitartrate - Physico-chemical and biopharmaceutical properties


🧏 GastroPlus(TM): Zolpidem.mdb (C\Users\kzin377\OneDr\AZ co\Felod.\HC in\Train\G+ mo\) − □ ×							
File Edit Database Simulation Setup Controlled Belease Tools Modules (Optional) Help							
Compound Gut Physiology-	łum P	harmac <u>o</u> kinetics		Simulation	<u>G</u> raph		
Selected Compound ver 9,70009							
SI Trans Time (h) = 3.217 Mean Abs Time (h) = 0.404 Longest Diss. Time (h) = 0.404							
Current= 2; Total = 16 Max Abs Dose (S+)= 3.328E+3 mg, Max Abs Dose (M) = 1.119E+3 mg. Support Files							
	Zolpidem tartrate 10 m		rtrate 10 mg IF	R.spd			
						~	
	Dosage IR: Table		.	Effective Permea	bility		
	rome	Initial Dose (mg):	8.04	Source: Human		▼	
	Si	bsequent Doses (mg):	0.04	Pe	ff (cm/s x 10^4):	4	
		Dosing Interval (h):	0.5	Sim Pe	ff x10^4 (Human)	4.0	
Molecular Formula: C14H22N2O3		Dose Volume (mL):	200	Convert	from User Data		
Molecular Weight (g/mol): 307.4	pH for Ref. Se	olubility: 10	More				
logP (neutral): 2.42 @pH: 1	Solubility (mg/mL @		Solubility	Biorele	vant Solubilities		
pKa Table	Mean Precipitation Time (sec): 10000			Dose No. = 0.5			
Diff. Coeff. (cm^2/s x 10^5): 0.7581							
Enzyme Table	Drug Particle Density (g/mL): 1.2			Absorption No. = 7.964			
Transporter Table	Particle Size (form 1): R=5.000, D=10.00						
Notes On 04/02/2016 some pKa values were litted to experimental Solubility-PH profile and updated as: Base pKa from 4.000 to 2.772 and its Solubility Factor from 500 to 2.005.6 8 Base pKa from 1800 to 6.056 and its Solubility Factor from 500 to 10 57.6 2 On 04/02/2016 some pKa values were litted to experimental Solubility-plan from 500 to 57.6 2 On 04/02/2016 some pKa values were litted to experimental Solubility-plan from 500 to 57.6 2 On 04/02/2016 some pKa values were litted to experimental Solubility-plan from 500 to 57.6 2 On 04/02/2016 some pKa values were litted to experimental Solubility-plan from 500 to 57.6 2 On 04/02/2016 some pKa values were litted to experimental Solubility-plan from 500 to 57.6 2 On 04/02/2016 some pKa values were litted to experimental Solubility-plan from 500 to 57.6 2 On 04/02/2016 some pKa values were litted to experimental Solubility-plan from 500 to 57.6 2 On 04/02/2016 some pKa values were litted to experimental Solubility-plan from 500 to 57.6 2 On 04/02/2016 some pKa values were litted to experimental Solubility-plan from 500 to 57.6 2 On 04/02/2016 some pKa values were litted to experimental Solubility-plan from 500 to 57.6 2 On 04/02/2016 some pKa values were litted to experimental Solubility-plan from 500 to 57.6 2 On 04/02/2016 some pKa values were litted to experimental Solubility-plan from 500 to 57.6 2 On 04/02/2016 some pKa values were litted to experimental Solubility-plan from 500 to 57.6 2 On 04/02/2016 some pKa values were litted to experimental Solubility-plan from 500 to 57.6 2 On 04/02/2016 some pKa values were litted to experimental Solubility-plan from 500 to 57.6 2 On 04/02/2016 some pKa values were litted to experimental Solubility-plan from 500 to 57.6 2 On 04/02/2016 some pKa values were litted to experimental Solubility-plan from 500 to 57.6 2 On 04/02/2016 some pKa values were litted to experimental Solubility-plan from 500 to 57.6 2 On 04/02/2016 some pKa values were litted to 57.6 2 On 04/02/2016 some pKa values were litted to 57.6 2 On 04/02/2016							
pKa Table logD: Emp-6.1 Diss Model: Johnson Pa	rtSize-Sol: OFF BileSalt	-Sol: ON Diff: ON Cor	nstRad: OFF	Precip: Time Ppara: 0F	F EHC: OFF ACAT	: Conc	

🎏 Dissolution Model for: Zolpidem 8 mg IV 8 min infus	ion			_		×	
Dissolution Model: Johnson	Z-factor (mL/m	g/s]: 0		<u>F</u> it to Ir	Vitro D	ata	
Effect of Temperature on Solubility Ref Temp [degC]: 37 Melting Point [degC]: 0							
Nanoparticle Effect Adjust solubility for nanoparticle effect Nano Factor: 0.5 Interf tension (J/m^2): 0.05							
					e not ition	ı	
☐ Use theoretical solubilization ratio	pH: Bile Salt Conc (mM):		6.5	5.8	0		
Duodenal solubility at bile salt concentration 2.8mM will be 0.648 mg/mL	Solubility (mg/mL):	0	2.21	8.27	0		
Diffusion Layer Thickness							
					<u>0</u> K		
				C	ancel		




Disposition parameters


- Use of IV data for distribution + elimination
- Use of in vitro metabolism + scaling for elimination

Zolpidem tartrate 10 mg IR

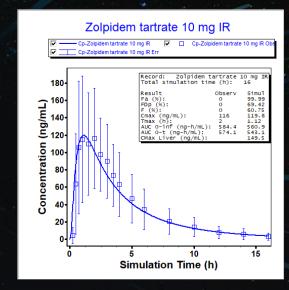
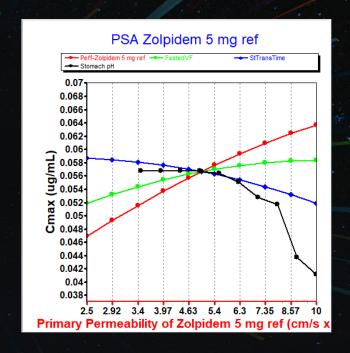

Model validation on oral IR products

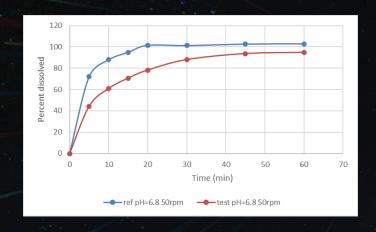
Table III. Pharmacokinetic parameters for different doses of zolpidem in healthy volunteers^[25]

Parameter	Zolpidem dose					
	2.5mg	5mg	10mg	20mg	40mg	
AUC _{12h} (μg/L • h)	131.38	259.75	513.87	1004.17	1971.53	
Ratio	1.0	0.979	0.978	0.975	0.945	
Lower limit of 95% CI		0.907	0.909	0.904	0.867	
Upper limit of 95% CI		1.057	1.054	1.053	1.036	
AUC _∞ (μg/L•h)	144.27	281.56	551.49	1100.43	2158.58	
Ratio	1.0	0.966	0.956	0.973	0.940	
Lower limit of 95% CI		0.890	0.880	0.902	0.860	
Upper limit of 95% CI		1.054	1.046	1.055	1.039	
C _{max} (µg/L)	29.96	58.57	120.82	220.47	388.78	
Ratio	1.0	0.972	1.008	0.934	0.817	
Lower limit of 95% CI		0.882	0.919	0.835	0.729	
Upper limit of 95% CI		1.072	1.106	1.046	0.920	

a In the analysis, the 95% confidence intervals (CI) for the ratio between normalised AUC values (AUC value divided by the dose multiplier) and the AUC for the 2.5mg dose showed proportionality for the pharmacokinetic parameters shown in the table, for all doses.


Abbreviations: AUC = area under the plasma concentration-time curve; AUC_{12h} = AUC from zero to 12 hours; AUC_{∞} = AUC from zero to infinity; C_{max} = peak plasma concentration.

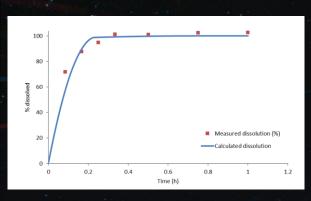
Results of PSA at 5 mg

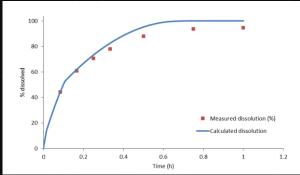

Percent volume in the small intestine, stomach transit time, stomach pH are the main sources of within subject variability

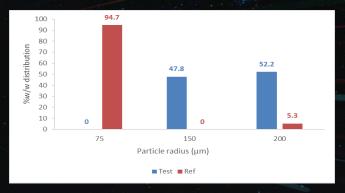
St SimulationsPlus

Model use: prediction of BE

Two 5 mg tablet batches representative of the BE study. Fail f2 comparison at pH 6.8




Use of VBE study to predict bioequivalence



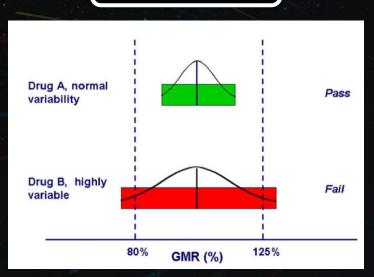
Mechanistic integration of dissolution

IR products are sensitive to pH, volume, transit time Use the P-PSD approach to fit the dissolution data A,B,C Salt solubility @ pH 6.8 = 2.2 mg/mL

A: Pepin, X.J.H., et al., Bridging in vitro dissolution and in vivo exposure for acalabrutinib. Part I. Mechanistic modelling of drug product dissolution to derive a P-PSD for PBPK model input. European Journal of Pharmaceutics and Biopharmaceutics, 2019. 142: p. 421-434. https://doi.org/10.1016/j.ejpb.2019.07.014

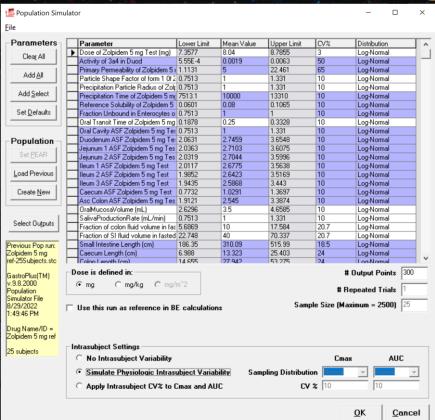
B: Pepin, X., M. Goetschy, and S. Abrahmsén-Alami, Mechanistic models for USP2 dissolution apparatus, including fluid hydrodynamics and sedimentation.

Journal of Pharmaceutical Sciences, 2021. https://doi.org/10.1016/j.xphs.2021.10.006

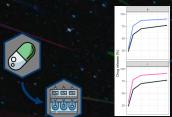

C: Pepin, X.J.H., et al., Physiologically Based Biopharmaceutics Model for Selumetinib Food Effect Investigation and Capsule Dissolution Safe Space – Part I: Adults. Pharmaceutical Research, 2022. https://doi.org/10.1007/s11095-022-03339-2

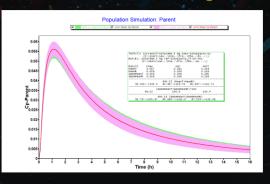
VBE: Need to power the study to demonstrate BE

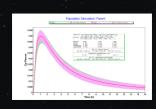
Within subject variability of 30%

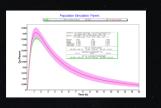

Within- subject %CV	GMR (%)	Sample size for a two-way crossover study
15	100	10
	105	12
	110	20
30	100	32
	105	38
	110	68
45	100	66
	105	80
	110	142
60	100	108
	105	132
	110	236
75	100	156
	105	190
	110	340

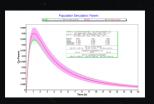
Davit, B., et al., Implementation of a Reference-Scaled Average Bioequivalence Approach for Highly Variable Generic Drug Products by the US Food and Drug Administration. The AAPS Journal, 2012. 14(4): p. 915-924. http://dx.doi.org/10.1208/s12248-012-9406-x

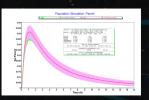


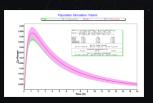

VBE: Virtual BE testing

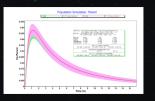


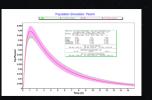


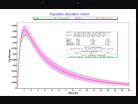

VBE: Test vs Ref: BE predicted











Take home message

- Plug and Play and GastroPlus are powerful tools.
- The impact of formulation's dissolution on its absorption can be evaluated via mechanistic modeling of absorption and allow to limit the number of clinical trials during the formulation design process.
- Plug and Play will enhance your R&D program.

St SimulationsPlus

Model Informed Drug Development + 2023

