

Simulation Software for Drug Discovery and Development

GastroPlus ver. 9.8.1 DDI Standards Update and Documentation Project

Outline

• Purpose:

This webinar will be an introduction to the GastroPlus DDI Standards Update project. This project is an extensive review of our current DDI Standards in order to update and document the input sources and assumptions for all of the substrates and perpetrators included in the GastroPlus (GP) library. This update will include addition of many new inhibition and induction mechanisms of perpetration for both enzymes and transporters. In addition to literature studies for current standards in the DDI Standards Update project, each one of the DDI standards will be accompanied by a full GP9.8.1 database, spreadsheet, slide set, and written report. The webinar will also provide a summary of the new mechanisms that have been added to midazolam, ketoconazole, gemfibrozil, and rifampicin.

Methods:

For each standard, the GP9.8.1 database has been extensively documented with literature references and if any parameters are fitted, that is described in the comments section. An Excel spreadsheet will be prepared, listing physicochemical, biochemical, and biopharmaceutical properties and sources of information. Also, *in vivo* preclinical (if any), and clinical studies used in development of the PBPK models and in the validation of each mechanism of DDI will be included. An MS-PowerPoint document will summarize the model development for each standard and finally an MS-Word report (suitable for inclusion in regulatory submissions) will be prepared.

Results:

Updates and documentation have been completed or will soon be released for 3A4 substrates midazolam, triazolam, and alfentanil and 2C8 substrates repaglinide and rosiglitazone. Also available for download will be the following perpetrators: fluconazole (validated for moderate reversible 3A4 inhibition), ketoconazole (validated for strong 3A4 rev. and irrev. inhibition), voriconazole (validated for strong rev. and irrev. 3A4 inhibition), and rifampicin (validated for strong induction of 3A4, 2C8, and 2C9). Many other DDI mechanisms are included in the perpetrator tables and additional validation documentation will be released as it becomes available from the DDI Task Force. In addition, you will see a new column in the Perpetrator Table that highlights which entries have been validated.

Conclusions:

This DDI Update project will be an extensive and time-consuming process. In the next few years, Simulations Plus will update the databases and documentation for more than 40 DDI substrates and perpetrators. These resources will be available for licensed users to download.

Primary Focus

- This webinar will describe or provide:
 - How to approach and document any project involving mechanistic absorption and PBPK simulations.
 - Description of the historical GastroPlus (GP) database of substrate and perpetrator DDI standards and a discussion of how these standards are being extensively documented for the development and validation of simulation models.
 - A process of DDI Standard development and documentation that is currently available to users who request the information.
- This webinar is not:

However, the next couple of slides will help answer those questions.

DDI Module – PBPK Models in various stages of validation: Probe Substrates, Inhibitors, and Inducers

Alfentanil	Dolutegravir	Metformin	Rifampicin	Warfarin
Atazanavir	Efavirenz	Midazolam	Rivaroxaban	
Atomoxetine	Fexofenadine	Omeprazole & Metab.	Rosiglitazone	
Buproprion	Fluconazole	Phenytoin	Rosuvastatin	
Caffeine	Fluvoxamine	Posaconazole	Theophylline	Atorvastatin
Cyclosporine	Gemfibrozil & glucuronide	Pravastatin	Tolbutamide	Simvastatin
Desipramine	Imipramine	Quinidine	Triazolam	
Digoxin	Itraconazole &Metab.	Raltegravir & Metab.	Verapamil	
Diltiazem & Metab.	Ketoconazole	Repaglinide	Voriconazole	

Progress – Initial DDI Standard Updates Addressed: Probe Substrates, Inhibitors, and Inducers

Efavirenz, Fluconazole, Gemfibrozil and glucuronide, Ketoconazole, Itraconazole + 3 metabolites, Midazolam, Repaglinide, Rifampicin, Voriconazole, Rosiglitazone, Triazolam

- Literature collection complete and collated in spreadsheet
- Model building and validation of single compound
- Validation for all mechanisms of DDI
- PowerPoint
- MS-Word Reports

As we are prioritizing the next batch of DDI standards to build and/or update, we welcome your feedback on compounds that are most important for your projects.

Outline of Process for Model Development and Documentation

- Creation of GP a project starts with structure import using ADMET Predictor Module for both substrates and perpetrators.
 - Physicochemical, biopharmaceutical, and biochemical properties
 - Initial evaluation via "Chemistry Classification" with all aspects of ADMET
 - Solubility vs. pH, dissolution, absorption (w/ influx and efflux transporters), clearance (metabolic, biliary, and renal), distribution, excretion, and toxicity.
 - Extensive literature collection and spreadsheet documentation.
 - Workbook with multiple sheets for Physicochemical, Metabolic, Transporter, Preclinical, and Clinical single compound and DDI study data for multiple perpetration mechanisms.
 - First simulations for "Measured Properties" with parameter sensitivity analysis.
 - Model building for individual substrate and/or perpetrator simulations compared to observed data for single escalating doses (for nonlinear dose dependence), multiple dosing (for autoinhibition / autoinduction).
 - DDI simulations for all appropriate mechanisms on both substrate and perpetrator.
 - Analysis of results using the "Guest"^{*} criterion for different levels of accuracy cutoff for increasing AUC (inhibition) and decreasing AUC (induction).
 - Preparation of slides and written reports suitable for regulatory submission.

Gemfibrozil BCS II Physicochemical Properties

MW = 250.34

Estimated Solubility Factor after fitting pH Vs solubility profile = 156.9 Adjusted Sol factor = 180

AP 10.0 = ADMET Predictor v. 10.0

S+= properties predicted with Simulations Plus models

S+Sw = native solubility in pure water

S+Peff = human jejunal permeability estimate

N.A = Not Available

S+LogP = 4 (AP 10.0)

Exp LogD (Octanol/H2O) @ pH7.4 = 2.8 (Luner et. al., Pharm. Res.11(12):1755 (1994) NOTE: Changed LogD (7.4) = 0.8 to calculate Kps then changed back to 2.8 to run simulations.

S+pKa = 4.92 (Acid) (AP 10.0 Exp pKa = 5 (Luner et. al., Pharm. Res.11(12):1755 (1994)

S+Sw = 0.0826 mg/ml @ pH 4.24 (AP 10.0)

Exp Sw = 0.02 mg/ml @ pH 1 37 deg C (LOW) (Luner et. al., Pharm. Res.11(12):1755 (1994) S+Solubility Factor = 276.89 S+FaSSIF = 0.42 mg/ml, S+ FeSSIF = 0.62 mg/ml (AP 10.0) Exp FaSSIF = N.A

S+Peff = 7.33x 10⁻⁴ (cm/s) (AP 10.0) (HIGH) Caco-2 Papp A->B = 5.89E-5 (Absorptions Systems Lighthouse Database) Caco-2 Papp B->A = 4.73E-5 (Absorptions Systems Lighthouse Database) Caco-2 Converted to Hum Peff = 5.60E-4 cm/s (From GeoMean =5.28E-5 cm/s from Abs Sys Caco-2)

S+hum_fup% = 5.18 %(AP 10.0) Exp. Fup = 3.5%(Oprea and Benet Wombat database) S+RBP = 0.67(AP 10.0) Exp Rbp =0.75(Deguchi et. al., Drug.Metab.Dispos.39(5):820 (2011)

S+Enzyme Substrate: <u>CYP2C9(48%), CYP2C19(71%),</u> UGT1A1(68%), <u>UGT1A3(97%)</u>, UGT1A9(76%), <u>UGT2B7(93%)</u> S+Transporter Substrate: P-gp(75%), <u>OATP1B1(99%)</u>, OAT1(87%),

Exp Enzyme Substrate: 2C9, 2C19, UGT1A3, UGT2B7

Exp Transporter Substrate: OATP1B1 (liver influx)

S+Enzyme Inhibitor: <u>CYP2C9(77%)</u> S+Transporter Inhibitor: OAT1(95%), <u>OAT3(76%),</u> Exp Enzyme Inhibitor: 2C8, 2C9 Exp Transporter Inhibitor: NTCP, OAT3, OATP1B1, OATP1B3

Gemfibrozil AP10.0 Transporter Classification

- Transporter Substrate Classification:
 - <u>OATP1B1-Substrate=Yes (99%);</u> OATP1B3-Substrate=No (60%); OCT1-Substrate=Yes (96%); OCT2-Substrate=Yes (74%); OAT1-Substrate=Yes (87%);
 <u>OAT3-Substrate=Yes (75%)</u>; Pgp-Substrate=Yes (75%);
 BCRP-Substrate=No (95%);

• Transporter Km Values:

 OATP1B1-Km=24.62uM; OATP1B3-Km=66.47uM; OCT1-Km=8.66uM; OCT2-Km=18.12uM; OAT1-Km=25.48uM; OAT3-Km=122.11uM;

• Transporter Inhibitor Classification:

OATP1B1-Inhibitor=No (54%); OATP1B3-Inhibitor=No (96%); OCT1-Inhibitor=No (77%); OCT2-Inhibitor=No (99%); OAT1-Inhibitor=Yes (95%); OAT3-Inhibitor=Yes (76%); Pgp-Inhibitor=No (96%); BSEP-Inhibitor=No (66%); BCRP-Inhibitor=No (97%);

• Transporter IC50 Values:

BSEP-IC50=48.26uM;

pH-solubility in vitro data of Gemfibrozil

After fitting the pH-solubility profile Acid pKa =5.025 Sol factor= 180

Luner et al., Pharm. Res. 11(12):1755 (1994)

Gemfibrozil Glucuronide Physicochemical Properties

MW = 426.47

AP 10.0 = ADMET Predictor v. 10.0 S+ = properties predicted with Simulations Plus models S+Sw = native solubility in pure water S+Peff = human jejunal permeability estimate N.A = Not Available S+LogP = 1.67(AP 10.0) Exp LogD (Octanol/H2O) @ pH7.4 Exp log P extrapolated from Log D

S+pKa = 4.12 (Acid) Exp pKa = N.A

S+Sw = 3.0900 mg/ml @ pH 3.15 (AP 9.5) Exp Sw =N.A S+Solubility Factor = 43.48 S+FaSSIF = 1.13 mg/ml, S+ FeSSIF = 2.71 mg/ml Exp FaSSIF =N.A

S+Peff = 4.0E-5 (cm/s) (AP 10.0)

S+hum_fup% = 11.2% (AP 10.0) Exp. Fup% =11.5% (Shitara et al., J.Pharmacol. Exp.Ther. 311(1):228(2004) NOTE: For all simulations Fup% = 5.0 to correct the Vdss for glucuronide

S+RBP = 0.65 (AP 10.0) Exp Rbp =N.A

S+Enzyme Substrate: Exp Enzyme Substrate: Hydrolase S+Transporter Substrate: P-gp(99%), <u>OATP1B1(99%),</u> OATP1B3(93%), OAT1(65%), OAT3(97%), OCT1(76%)

Exp Transporter Substrate: OATP1B1 (liver influx), OAT3 (kidney influx), MRP2 (liver-bile efflux), MRP3 (liversystemic efflux), MRP4 (kidney-tubule efflux)

S+Enzyme Inhibitor: <u>CYP2C9(35%)</u>, CYP3A4(42%) S+Transporter Inhibitor: Exp Enzyme Inhibitor: 2C8, 2C9 Exp Transporter Inhibitor: NTCP, OAT3, OATP1B1, OATP1B3

Gemfibrozil Glucuronide AP10.0 Transporter Classification

- Transporter Substrate Classification:
 - OATP1B1-Substrate=Yes (99%); OATP1B3-Substrate=Yes (92%); OCT1-Substrate=Yes (76%); OCT2-Substrate=No (91%); OAT1-Substrate=Yes (65%); OAT3-Substrate=Yes (97%); Pgp-Substrate=Yes (99%); BCRP-Substrate=No (95%);
- Transporter Km Values:
 - OATP1B1-Km=42.7uM; OATP1B3-Km=74.53uM; OCT1-Km=6.99uM; OCT2-Km=2.99uM; OAT1-Km=24.36uM;
 OAT3-Km=50.64uM;

• Transporter Inhibitor Classification:

OATP1B1-Inhibitor=No (54%); OATP1B3-Inhibitor=No (49%); OCT1-Inhibitor=No (89%); OCT2-Inhibitor=No (99%); OAT1-Inhibitor=No (94%); OAT3-Inhibitor=No (83%); Pgp-Inhibitor=No (96%); BSEP-Inhibitor=No (99%); BCRP-Inhibitor=No (97%);

• Transporter IC50 Values:

– BSEP-IC50=41.79uM;

Extended Clearance CS (ECCS)

Compound are assigned to one of six classes based on:

- High or low permeability
 High or low MW (400 g/mo)
- 2) High or low MW (400 g/mol)3) Ionization class: Acids/Zwitterions

versus Bases/Neutrals

Class 1A and 2 are metabolism Classes 3A and 4 are renal Class 1B is hepatic uptake Class 3B is hepatic uptake or renal

Varma M., et. al. Pharm. Res. 2015, 32, 3785.

Varma and ADMET Predictor ECCS models

S+Hum CL Mech.

Statistic	ECCS	Hum CL Mech Bin
Concordance	91%	96%
Youden	0.78	0.94
Coverage	88%	92%

Varma M., et. al. Pharm. Res. 2015, 32, 3785.

Purely in silico model

🌿 GastroPlus(TM): ~003 DDI Star	🞏 GastroPlus(TM): ~003 DDI Standard SS MBB 2021-02-19.mdb (C:\Users\Public\Simul\Gastr\Drug\DDI-2019\Gemfi\\) – 🛛 🗙								
<u>F</u> ile <u>E</u> dit <u>D</u> atabase <u>S</u> imulation Setup Controlled <u>R</u> elease Too <u>l</u> s Modules (Opt <u>i</u> onal) <u>H</u> elp									
Compound Gut Physiology-Hum Pharmacokinetics Simulation Graph									
Selected Compound Gemfibrozil AP10.0 GP9.8.1 Current= 1; Total = 25	Selected Compound ver. 9.8.1003 ✓ Gemfibrozil AP10.0 GP9.8.1 ✓ SI Trans Time (h) = 3.3 Mean Abs Time (h) = 0.227 Longest Diss. Time (h) is @ pH 1.0 = 1.32 hours Max Abs Dose (S+)= 1.098E+5 mg. Max Abs Dose (lit) = 3.34E+4 mg.								

All properties are predictions from ADMET Predictor v10.0.0.0

Tendency Supersaturate=SupSat (89%); Likelihood of BBB Penetration=Low (42%);

ECCS Classification=Class_1A (Metabolism); S+ Mechanistic Clearance Classification=Metabolism;

Human Rbp prediction saved in database. Predicted Rat Rbp = 0.67

Human Fup prediction saved in database. Predicted Rat Fup = 4.2%

Transporter Inhibitor Classification: OATP1B1-Inhibitor=No (54%); OATP1B3-Inhibitor=No (96%); OCT1-Inhibitor=No (77%); OCT2-Inhibitor=No (99%); OAT1-Inhibitor=Yes (95%); OAT3-Inhibitor=Yes (76%); Pgp-Inhibitor=No (96%); BSEP-Inhibitor=No (66%); BCRP-Inhibitor=No (97%);

Transporter Substrate Classification: OATP1B1-Substrate=Yes (99%); OATP1B3-Substrate=No (60%); OCT1-Substrate=Yes (96%); OCT2-Substrate=Yes (74%); OAT1-Substrate=Yes (87%); OAT3-Substrate=Yes (75%); Pgp-Substrate=Yes (75%); BCRP-Substrate=No (95%);

Transporter Km Values: OATP1B1-Km=24.62uM; OATP1B3-Km=66.47uM; OCT1-Km=8.66uM; OCT2-Km=18.12uM; OAT1-Km=25.48uM; OAT3-Km=122.11uM; Transporter IC50 Values: BSEP-IC50=48.26uM;

Transporter Table	Particle Size (form 1): R=25.00, D=50.00 Dissolution No. = 2.5								
All properties are predictions from ADMET Predictor v10.0.0.0 Tendency Supersaturate=SupSat (89%); Likelihood of BBB Penetration=Low (42%); ECCS Classification=Class_1A (Metabolism); S+ Mechanistic Clearance Classification=Metabolism; Human Rbp prediction saved in database. Predicted Rat Rbp = 0.67 Human Fup prediction saved in database. Predicted Rat Fup = 4.2%									
Transporter Inhibitor Classification: OATP1B1-Inhibitor=No (54%); OATP1B3-Inhibitor=No (96%); OCT1-Inhibitor=No (77%); OCT2-Inhibitor=No (99%); OAT1-Inhibitor=Yes (95%); OAT3-									
pKa Table logD: Struct-6.1 Diss Model: Johnson	PartSize-Sol: ON BileSalt-Sol: ON Diff: ON ConstRad: OFF Precip: Time Ppara: Zhim EHC: OFF ACAT: Conc								

SE Simulation

Hum PO 900 mg Tab in silico vs. Honkalammi

Purely in silico

All mechanisms in silico, in vitro, & fitted

Physiology used: Healthy Male 23 years 73 Kg 23 BMI

All mechanisms PBPK Model: Liver and Kidney were assumed Permeability limited organs; the rest were assumed perfusion limited Kps for the Glucuronide record were calculated using the Poulin-extracellular method was used for both Perfusion Limited and for Permeability limited tissues.

Honkalammi et.al., Drug. Metab. Dispos. 39(10):1977(2011)

Conclusions and Recommended Testing Based on *in silico* properties

- Low solubility in stomach probably won't reduce bioavailability but may result in slow dissolution and longer T_{max}.
- Low MWt, high permeability, and acidic pKa of parent GEM suggest mainly metabolic clearance by Phase I (2C9 and 2C19) and Phase II (UGT1A3 and UGT2B7) enzymes.
- AP10.0 transporter module suggests possible liver and kidney influx.
- High MWt, low permability, and acidic pKa of GEM-glucuronide suggests systemic clearance by hepatic and renal influx.
- Both parent and glucuronide metabolite may be involved in DDI inhibition of enzymes.

Outline of Process for Model Development and Documentation

- Creation of GP a project starts with structure import using ADMET Predictor Module for both substrates and perpetrators.
 - Physicochemical, biopharmaceutical, and biochemical properties
 - Initial evaluation via "Chemistry Classification" with all aspects of ADMET
 - Solubility vs. pH, dissolution, absorption (w/ influx and efflux transporters), clearance (metabolic, biliary, and renal), distribution, excretion, and toxicity.
 - Extensive literature collection and spreadsheet documentation.
 - Workbook with multiple sheets for Physicochemical, Metabolic, Transporter, Preclinical, and Clinical single compound and DDI study data for multiple perpetration mechanisms.
 - First simulations for "Measured Properties" with parameter sensitivity analysis.
 - Model building for individual substrate and/or perpetrator simulations compared to observed data for single escalating doses (for nonlinear dose dependence), multiple dosing (for autoinhibition / autoinduction).
 - DDI simulations for all appropriate mechanisms on both substrate and perpetrator.
 - Analysis of results using the "Guest"^{*} criterion for different levels of accuracy cutoff for increasing AUC (inhibition) and decreasing AUC (induction).
 - Preparation of slides and written reports suitable for regulatory submission.

Human Cp vs. time profiles before and after GEM and GEM-glucuronide DDIs

Subset of 13 references from a total of 83:

- 1. Hermening-JChromatogrBBiomedSci-741-2-129-2000-PK profiles-of-gemfibrozil-and-glucuronide-and-covalent-adducts-PO-900-mg
- 2. Hirano-DrugMetabDisp-34-7-1229-2006-DDI-Pitavastatin-Verapamil-Ki-hepatic-uptake-OAT1B1
- 3. Ho-Gastroenterology-130-6-1793-2006-Rosuvatatin-hepatic-uptake-OATP and NTCP-Vmax-Km transporters
- 4. Honkalammi-DrugMetabDispos-39-10-1977-2011-Human data-Repaglinide-Gemfibrozile DDI-2C8 activity
- 5. Kajosaari-Backmann-BasicClinPharmcolToxicol-97-249-2005-Metabolism-Repaglinide-Gemfibrozil-CYP2C8-Ki-CYP3A4
- 6. Nakagomi-Xenobiotica-37-4-416-2007_Inhibition of hOAT3 pravastatin transport by gemfibrozil and glucuronide human
- 7. Nakagomi-Hagihara-Xenobiotica-37-5-474-2007-Gemfibrozil-and-its-glucuronide-inhibit-OATP1B1
- 8. Ogilvie-DrugMetabDispos-34-1-191-2006-Gemfibrozil Glucuronide-HLM study-NADPH dependent inactivation-2C8
- 9. Schneck-ClinPharmacolTher-75-5-455-2004-Rosuvastatin and Gemfibrozil DDI
- 10. Wang-CPT- PharmacometSysPharmacol-6-4-228-2017-Transporter Based DDI Rosuvastatin PBPK model SimCyp
- 11. Wen-Neuvoven-DrugMetabDisposition-29-11-1359-2001-invitro-2C9 inhibition-Gemfibrozil
- 12. Yamazaki-Lin-Xenobiotica-35-7-737-2005-OATP1B1-MRP2-P-gp-mediated transport-Gemfibrozil-DDI-Fibric acid derivatives
- 13. Yoshida-ClinPharmTherap-91-6-1053-2012-Transporter-DDI-of-OATP-Substrates-from-in-vitro-studies-w-Supplements

Extensive Workbook for all DDI Standards

A	B	C	D	E		F	G	H		K	L	M	N O
fibro	zil Physicochemical Properties		MWt		Estim	nated	free base solui	oility usin	ig GSE Ref. Sanghvi-Y	alkowsky	-QSARCombS	ci-22-2	-258-2003-Estima
5\18\	2020 Updated 09\22\2020		250.3	1	log S	= 0.5 -	- 0.01(m.p. °C -	· 25) – log	P solution logS=(0.5 -0.01(1	122-25)-3.97=-	4.45	
					Aq. S	ol							
					-5.	.07E+0	0 Log Sol (M)						
	Property	Value	Units	Ref.	8	.51E-0	6 M						
	S+lo	gP	1	ADMET Predictor ver. 10.0		0.00)2 g/L						
	Exp log D (Oct/H2O)@pH	7.4 2.	3	Luner-Radebaugh-PharmRes-11-12-1755-1994-Gemfibrozil-pH	sol	IS/Bas	e						
	Exp log P extrapolated from Lo	g D 5.	2	GP 9.7	<u>File</u>	Edit O	ptions Object Dat	abase <u>S</u> ear	rch List <u>W</u> indow <u>H</u> elp				
	pKas				See B1	UBTI	EMASTER-2008	.DB/Main		(D0)			
	S+Acid	Ka 4.9	2	ADMET Predictor ver. 10.0		IS IS	IS/Base	ioct Deteb	eco Soerch List Wins	low Holp			
	Exp Acid	Ка	5	Luner-Radebaugh-PharmRes-11-12-1755-1994-Gemfibrozil-pH	sol 🛔								
	Solubility				#		DS-STSTEMS-		JUSE-DATADASE-M	00-0-10-0	<boot></boot>	1 of 1	
	S+	Sw 0.082	5 mg/mL	ADMET Predictor ver. 10.0	•		Furnis Query B	rowse Opt	Jale	Searc	h Domain: All		
	S+	рН 4.2	1	ADMET Predictor ver. 10.0	±		Structure			ID			_DS_PN
	S+Solublity Fac	tor 276.8	Ð	ADMET Predictor ver. 10.0	原調	L.					186		L0186
	Aq. Sol from (SE 0.0021	3 mg/mL	Yalkowsky GSE		#							
	Exp. Solubility @ pH 1 @37 de	g C 0.0200) mg/mL	Luner-Radebaugh-PharmRes-11-12-1755-1994-Gemfibrozil-pH	sol	H				Com	pound Name		CAS RegistryNumb
	S+FaSSIF @ pH	5.5 0.420) mg/mL	ADMET Predictor ver. 10.0				<u>م</u> . 0	Η_		Gemfibrozil		25812-30-0
	S+FeSSIF @ pH	5.0 0.620) mg/mL	ADMET Predictor ver. 10.0			ĺ	≈ \``	.,3 O ^{''}		00111101021		20012-00-0
	Permeability						нс	<u>≪</u> "∖		*fmlo	Ctructure		inal waight Structu
	S+P	eff 7.33E+0	1 cm/s	ADMET Predictor ver. 10.0			1,30	Ŭ		IIIIa			monwergni_3iruciu
	Caco-2 Papp A	>B 5.89E-0	5	Absorptions Systems Lighthouse Database					0113		C15 ¹¹ 22 ^O 3		250.3408
	Caco-2 Papp B	>A 4.73E-0	5	Absorptions Systems Lighthouse Database									
	Ratio B->A / A	>B 0.8)		S	S				Sele	cted		Therapeutic_Catego
	GeoMean B->A and A	>B 5.28E-0	5	Absorptions Systems Lighthouse Database									Antihyperlipoprotei
	P-gp Substr	ate No	Yes/No			_							
	Caco-2 Converted to Hum P	eff 5.60E-0	1 cm/s	Converted from GeoMean of Absorption Systems Caco-2			PctBound HumanPlasm	aProt Log	PctBound RatPlasmaProt Log	OralBic	availability LitValue		10M/eight LDS File
	Blood to Plasma Conc. Ratio			. ,			-				98.0000		250.3000
	S+F	bp 0.6	7	ADMET Predictor ver. 10.0	s	s	PctRemaining_HumanLiv	/erMsomes	PctRemaining_RatLiverMsomes	Papp_C	Caco2_AB_Log (Papp >	: 10E6)	app_Caco2_BA_Log
	Ex	bp			-		35.300 ProioDiscon e Batis Bat. La	0	67.5000	Dawn A	1.7699		1.6746
	Fitted for PE	РК					anniasnarauurtat_L0	9	1.7000	_eabb_e	mont_mount_AD_LUg	ľ	wpp_mun_much_dA_L0g
	Fraction Unbound in Plasma				5	s	DoseNumber_LitValue		EffluxRatio_Caco2_Log	pKa1			Ka2
	S+PrUnk	nd 5.1	3 %	ADMET Predictor ver. 10.0			240.000	00	-0.0953		4.8900		
	Fy	up 3	5 %	Oprea and Benet Wombat database			EffluxRatio_MDR_MDCK	_Log	HIA_LitValue	pKa3			llA_LitValue
	EX.	up J.	2 %	Miller-ClinPharmacokinet-34-2-155-1998-Clinical PK of Fibric	cid		InVitroHalfLife HumanL	vrMsomes (min)	InVitroHalfLife RatLiverMsomes	(min) Solubili	tv. LitValue (mα/mL)		Solubility pH20 (ma/mL)
	Melting Point	мр					63.300	0	37.9000		0.0100	ľ	
					<u> </u>		LogP_Predicted		LogP	Solubili	ty_pH74		Jptake_RatBrainPerfusion_L
•	Gemfibrozil-Physicochemical GGluc-Physicochemica	l Metab	olism-Hern	nening 2000 Metab & CLint-UGT Transporter-OATP1B1	CYP E		4.8000)	4.6370				N 1-1 1
_							MaximumDoseStrength_ Ω 0101	j∟nt value)	VolumeOfDistribution_LitValue ()	UKg) CLint_u	uL_min_milCells		.LINE_ML_MIN_Mg
							Pann Cacn2 AB BCS	r pH65	Recov Caco2 AB BCS pH65	Papp	Caco2 AB BCS pH74		Recov Caco2 AB BCS pH

Extensive Workbook for all DDI Standards

Extensive Workbook for all DDI Standards

X77 * : X / fx			v
A A 75 76 77 78	B C D E F G H All subjects received 3 mg oral MDZ, followed by the indicated dose of oral ALF. Result ND, Not determined (the calculated F_G for MDZ after rifampin was either zero or indefin compartment: F_{oral} , oral bioavailability; F_{Gr} intestinal bioavailability; CL _{mininis} effect clearan *Significantly different from same-dose control ($P < .05$).	I J K L M N O P Q R S T s are given as mean ± SD (N = 10). ite because F ₁₁ was zero); CL/F, oral clearance; V ₂ /F, volume of central	U V W X Y Z AA AB AC AD AE AF
79 80 81 82 83 84		Midaz. 3 mg PO 12 hr after RIF 600 mg QD for 6 days Baseline	Midaz 3 mg PO 12 hr after RIF 600 mg PO QD for 6 days Full DDI
85		Rifampicin 600 mg Cp vs. Time Rifazolam 3 mg PO Cp vs. Time	Rifampicin 600 mg PO Co vs. Time R Midazolam 3 mg PO Co vs. Time
86 GastroPlus(TM) 9.8.0008 87 Compound 1: 88 Database: 89 Record:	12/23/2020 9:24:33 AM Victim Midazolam-GP-9.7-DDI-Standard-VL-2020-09-07-MB8-2020-12-22.mdb Midaz PO 3.0mg vs RIF 600mg 5d Kharasch		Image: Fold Increase in UGTA3 Activity in Liver Image: Fold Increase in 3A4 Activity in Jejunum1 10 ⁴ Image: Fold Increase In 3A4 Activity in Jejunum1
90 Compound 2: 91 Database: 92 Record:	Perpetrator: 3A4 ind. & inh., UGT1A3 ind., MRP2 inh., and OATP1B1 inh. Rifampicin-GP9.8-DDI-Standard-KS-MBB-SA-RC-2020-12-22.mdb Rifamp 600mg PO DDI PO 3mg MDZ Kharasch		$rac{12}{11}$
93 94 [NewTable]	Dynamic Simulation Results AUC(0-t) AUC		E 10 ² .
95 Compound 96 Midaz PO 3. Omg vs RIF 600mg 5d Kharasch-baseline 97 Rifamp 600mg PO DDI PO 3mg MDZ Kharasch-baseline 98 RIF-Gluc Metabolite-baseline 99 Midaz PO 3. Omg vs RIF 600mg 5d Kharasch-DDI 100 Rifamp 600mg PO DDI PO 3mg MDZ Kharasch-DDI 101 RIF-Gluc Metabolite-DDI 102 Midaz PO 3. Omg vs RIF 600mg 5d Kharasch-ratio 103 Rifamp 600mg PO DDI PO 3mg MDZ Kharasch-ratio 104 RIF-Gluc Metabolite-ratio 105 Midaz PO 3. Omg vs RIF 600mg 5d Kharasch-ratio	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Concentration Co
106 107 108		0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 Simulation Time (h)	Simulation Time (h)
110 111 112			
113 114 115		Image: state stat	
116 117 118			
120			
Peloquin 600mg PO Results	Acocella 600mg 900mg PO QD Acocella 600mg 900mg Res	ults Kharasch 2011 600mg DDI Alf IV Khar. 2004 600mg vs Midaz IV Khar. 2004 6	00mg vs Midaz PO K (+) : (

Inclusion of a spreadsheet for fast editing of Perpetrator Table with new "Validated" Field

H5	58 🔻 🗄 🗙 🗸 f_{\star} Ogilvie-Parkinson-DrugMetabDispos-34-1-191-2006-Reversible Inhibition (IC50,t,HLM) of paclitaxel metabolism by gemfibrozil glucuronide in HLM.												
			0		-	r.	6				K		
1	А	B	L	D	E	F	G	Н		J	K	L	IVI
1		Perpetrators Table			InhibitionC								
				In hit hit is not	innibitionC	In hit is a Countrat					In Mitra Durat		
2	0	Canaria	-		t-	Ture	Cubatrata	Deference	lu) (itua E. 🖃	In Vitra Fu Tuna		Kinast –	Validated
2	ongon	Generic Come	enzyme		LS	Type	Substrate Y	Cribia Parkinson DrugMatabDispos 24		Cale(Hallifery) HIM		Kinact •	
04	0	2 Gem Glue Ternie EC Kps	200	20		IC50-III-III VILIO, I	Pacificaxel	Ogilvie Parkinson DrugMetabDispos-34	0.552	Calc(Hallifax)-HLW	0.1	0.21	TAUSE
85	8	4 Care Clua Tarria EC Kps	208	24		Ki new in withe U	Pacificaxer	Nekazami Uzeihara Vanehiatia 27.4.4	0.820	Calc(Halliax)-HLIV	0.5	0	TRUE
80	8	4 Gem Gluc Tornio EC Kps	OAT3	9.9		KI-rev-In Vitro, U	14C-Pravastatin	Nakagomi-Haginara-Xenobiotica-37-4-4	-1	Unknown	0.5	0	TRUE
87	8	Gern Gluc Tornio EC Kps	OATD101	13	uivi	Ki new in withe U	Unknown 211 Ditessatetie	Visiona Curinghammerap-91-6-1053-20	-1	Unknown	0.5	0	FALSE
88	8	6 Gem Gluc Tornio EC Kps	OATP1B1	22.0	uivi	KI-rev-In vitro, U	3H-Pitavastatin	Hirano-Sugiyama-DrugivietabDispositio	1-1	Onknown	0.5	0	FALSE
89	8	7 Gem Gluc Tornio EC Kps	OATPIBL	15.7	UN	KI-rev-In Vitro, I	14C-Pravastatin	Nakagomi-naginara-xenobiotica-37-5-4	0.987	Calc(Austin)-Hep	0.5	0	FALSE
90	8	8 Gem Gluc Tornio EC Kps	OATP1B1	/.6	uM	KI-rev-In Vitro, U	14C-Pravastatin	Nakagomi-naginara-Xenobiotica-37-5-4	-1	Unknown	0.5	0	TRUE
91	8	9 Gem Gluc Tornio EC Kps	OATP1B1	14	uM	IC50-rev-in vitro, U	Unknown	Yoshida-ClinPharmTherap-91-6-1053-20	-1	Unknown	0.5	0	FALSE
92	9	0 Gem Gluc Tornio EC Kps	OATP1B3	74	uM	IC50-rev-in vitro, U	Unknown	Yoshida-ClinPharmTherap-91-6-1053-20	-1	Unknown	0.5	0	FALSE
93	9	1 GEM PO 600 mg DDI Repag Tornio	2C8	30.4	uM	Ki-rev-in vitro, T	Paclitaxel	Kajosaari-Backmann-BasicClinPharmcol	0.826	Calc(Hallifax)-HLM	0.5	0	TRUE
94	9	2 GEM PO 600 mg DDI Repag Tornio	2C8	120	uM	IC50-rev-in vitro, T	Paclitaxel	Ogilvie-Parkinson-DrugMetabDispos-34	0.826	Calc(Hallifax)-HLM	0.5	0	FALSE
95	9	3 GEM PO 600 mg DDI Repag Tornio	2C9	30	uM	IC50-rev-in vitro, T	Diclofenac	Ogilvie-Parkinson-DrugMetabDispos-34	0.826	Calc(Hallifax)-HLM	0.5	0	FALSE
96	9	4 GEM PO 600 mg DDI Repag Tornio	2C9	4	uM	Ki-rev-in vitro, U	Tolbutamide	Wang-JPET-302-1-43-2002-Unbound inh	-1	Unknown	0.5	0	FALSE
97	9	5 GEM PO 600 mg DDI Repag Tornio	2C9	5.8	uM	Ki-rev-in vitro, T	Tolbutamide	Wen-Neuvoven-DrugMetabDisposition	0.826	Calc(Hallifax)-HLM	0.5	0	TRUE
98	9	6 GEM PO 600 mg DDI Repag Tornio	NTCP	23	uM	IC50-rev-in vitro, U	Rosuvastatin	Ho et al-Gastroenterology. 2006-130(6)	-1	Unknown	0.5	0	FALSE
99	9	7 GEM PO 600 mg DDI Repag Tornio	OAT3	3.4	uM	Ki-rev-in vitro, U	14C-Pravastatin	Nakagomi-Hagihara-Xenobiotica-37-4-4	-1	Unknown	0.5	0	FALSE
100	9	8 GEM PO 600 mg DDI Repag Tornio	OAT3	3.2	uM	IC50-rev-in vitro, U	Unknown	Yoshida-ClinPharmTherap-91-6-1053-20	-1	Unknown	0.5	0	FALSE
101	9	9 GEM PO 600 mg DDI Repag Tornio	OATP1B1	25.2	uM	Ki-rev-in vitro, U	3H-Pitavastatin	Hirano-Sugiyama-DrugMetabDispositio	-1	Unknown	0.5	0	FALSE
102	10	0 GEM PO 600 mg DDI Repag Tornio	OATP1B1	31.7	uM	Ki-rev-in vitro, T	14C-Pravastatin	Nakagomi-hagihara-Xenobiotica-37-5-4	0.645	Calc(Austin)-Hep	0.5	0	FALSE
103	10	1 GEM PO 600 mg DDI Repag Tornio	OATP1B1	15.1	uM	Ki-rev-in vitro, U	14C-Pravastatin	Nakagomi-hagihara-Xenobiotica-37-5-4	-1	Unknown	0.5	0	FALSE
104	10	2 GEM PO 600 mg DDI Repag Tornio	OATP1B1	4	uM	IC50-rev-in vitro, U	3H-Rosuvastatin	Schneck-ClinPharmacolTher-75-5-455-2	-1	Unknown	0.5	0	FALSE
105	10	3 GEM PO 600 mg DDI Repag Tornio	OATP1B1	12.5	uM	Ki-rev-in vitro, U	3H-E217BETAG	Yamazaki-Lin-Xenobiotica-35-7-737-200	-1	Unknown	0.5	0	TRUE
106	10	4 GEM PO 600 mg DDI Repag Tornio	OATP1B1	20	uM	IC50-rev-in vitro, U	Unknown	Yoshida-ClinPharmTherap-91-6-1053-20	-1	Unknown	0.5	0	FALSE

For example: the rifampicin perpetrator table has > 400 rows

Documentation directly in comment field of database

<u>C</u> ompound	Gut Physiology-Hur	n	Pharmac <u>o</u> kinetics	Ĭ	Simulation	<u><u> </u></u>	raph
Selected Compound Rifamp 600mg P0 DDI P Current= 19; Total = 34		SI Trans Tim Longest Diss Max Abs Do:	e (h) = 3.228 Me : Time (h) is @ pH 4.5 = 0.262 :e (S+)= 8.08E+3 mg. Me	ean Abs Time (h hours ax Abs Dose (lit)	 = 0.66 = 7.864E+3 mg.		^
	1	Rifamp 600n	g PO DDI PO 3mg MDZ Khara	asch.opd Ri	 famp 600mg P0 DDI P0 	3mg MDZ Kharasch.r	ndd
		losage orm:	Mixed Multiple Doses Initial Dose (mg Subsequent Doses (mg		Effective Perme Source: Human	ability Peff (cm/s x 10^4):	2.48
Molecular Formula:	C43H58N4012	-116	Dosing Interval (h Dose Volume (mL	24 250	Conve	rt from User Data	2.40
Reference logD:	1.3 @pH: 7.4	Solubility (m	g/mL @pH=5.5): 0.64	Solubility	Biorel	evant Solubilities	
pKa Tat	le		Mean Precipitation Time (sec Diff. Coeff. (cm ² /s × 10 ⁵): 900): 0.41	Dos	e No. = 3.7763	
Enzyme T	able		Drug Particle Density (g/mL): 1.2	Absorp	otion No. = 4.89	3
Transporter	Table	Pa	rticle Size (form 1): R=25.00, D	=50.00	Dissolu	tion No. = 12.3	08
udded linear CLintu = 20 L/h to Liver	to account for esterase forma	tion of 25-de	sacetyl-rifampicin and changed	the Tissue mod	lel to Permeability Limited	model	
nduction Added: NOTE; Used Ave. elated *gp EC50,t/HLM = 26 uM and Emay *gp EC50,t/Hep = 0.192 uM and Em A4 EC50,t/Hep = 0.192 uM and Em	EC50.tHep = 0.192 uM from 3 := 4.4 Ref: AnuzanitJ pharm F nax = 2.5 (start test value) Ref. ax = 47.5 Ref: Ave. of 4 value	RA4 induction Pharm Sci-14 Lutz-CPT-10 s from Mosc	nin Moscovitz, JE, JPET, 365() -2-236-2011- Induction of P-gp)4-6-1182-2018 concludes that pvitz, JE, JPET, 365(2):262 (20	2):262 (2018) an by rifampin EC50 for PXR i 118) and Varma-I	d Varma-Drug Metab Disp nduced genes should be Drug Metab Dispos-41-96	os-41-966-2013. App the same. 5-2013. Applied to all	lied to all FXR
Ka Table LlogD: Struct-6.1 Di	s Model Johnson PartS	ize-Sol: ON	BileSalt-Sol: ON LDiff: ON	ConstBad: ON	Precip: Time Poara:	Zhim EHC: DEE	ACAT: Conc

Tendency Supersaturate=SupSat; Likelihood of BBB Penetration=Low (92%); Pgp-Inhibitor=Yes (97%); Pgp-Substrate=Yes (94%); OATP1B1-Inhibitor=Yes (91%); OCT2-Inhibitor=No (95%); BSEP-Inhibitor=Yes (83%); BCRP-Substrate=Yes (54%);
ECCS Classification=Class 4; High MWt; S+ Mechanistic Clearance Classification=HepUptake;
Human Rbp prediction saved in database. Predicted Rat Rbp = 1.25
Human Fup prediction saved in database. Predicted Rat Fup = 11.27%
MBB, 4/5/2020, Updated 12/27/2020
Clinical data from
Changed log P to log D(7.4) = 1.3 Ref. Measured in Roche discovery assays: Baneyx-EurJPharmSci-56-1-2014-PBPK
modeling of CYP3A4 induction by rifampicin
Used log $P = 1.5$ to calculate Kps and chnaged back log $p = 1.3$
Changed Solubility to 0.64 at pH 5.5 Ref. Becker-J Pharm Sci-98-7-2252-2009-Rifampicin Biowaiver monograph- pH Vs
Solubility profile
Roche PAMPA based conversion to $Peff = 0.4E-4 \text{ cm/s}$ (a value determined from PAMPA. Ref. Measured in Roche discovery
assays: Baneyx-EurJPharmSci-56-1-2014) was increased by 6.2-Fold to 2.48E-4 cm/s per Baneyx for all records.
Changed fup% = 7% Ref. Yoshikado-ClinPharmTherap-100-5-513-2016-Supplement
Changed $Rbp = 0.8$ to calculate Kps that match the Noncompartmental Vdss for healthy subjects.
etc.
Induction Added: NOTE: EC50 u = 64 nM Unbound 3A4 induction from Asaumi R CPT Pharmacometrics Syst Pharmacol 7:

186 (2018). Applied to all PXR related genes. P-gp EC50,t,HLM = 26 uM and Emax = 4.4 Ref: Anuzanit-J pharm Pharm Sci-14-2-236-2011- Induction of P-gp by rifampin P-gp EC50,t,Hep = 0.064 uM and Emax = 2.2 Ref. Lutz-CPT-104-6-1182-2018 concludes that EC50 for PXR induced genes should be the same.

etc.

UGT1A1 EC50,t,Hep = 0.0.64 uM and Emax = 4.4 Emax is the average of 3 values from Moscovitz (Note: Same Emax as UGT2B7 which are in both Gut and Liver Ref. Moscovitz, 2018

etc.

Inhibition Added:

P-gp inhibition Ki,t,HLM = 13.7 uM Substrate E17G and NMQ Ref. for HEK293 iinverted memb. vessicles Ave. Pedersen-EurJPharmSci-103-70-2017

OATP1B1 inhibition Ki = 0.62 uM Substrate = 3H-TIC Ref. Takashima T. J. Nucl. Med. 53:741 (2012)

3A4 inhibition Ki,u = 18.5 uM Ref. Kajosaari-BasicClinicalPharmacolToxicol-97-249-2005

etc.

Biotransformation Pathway of Gemfibrozil

A. Hermening et al. / J. Chromatogr. B 741 (2000) 129-144

Excretion balances (% of dose) of gemfibrozil and its phase-I and phase-II metabolites in young hyperlipidaemic patients after oral administration of a single gemfibrozil dose (900 mg)^a

	Urinary recover	y (% of dose)					
	Aglycones	Acyl glucuronides					
Gemfibrozil	0.04 ± 0.01	34.1±8.9					
Metabolite 1	0.02 ± 0.01	5.0 ± 1.7					
Metabolite 2	_	1.1 ± 0.2					
Metabolite 3	9.6±2.4	15.1 ± 2.9					
Metabolite 4	-	0.6 ± 0.1					
Total	9.6±2.4	55.9±11.5					
^a Amounts excreted into urine extrapolated to infinity were							
calculated as $Ae_{0\to\infty} = Ae_{0\to\tau} / (1 - e^{-\lambda z \cdot t_{\text{last}}})$. (All values are							
expressed as mean	\pm SD; $n = 3.)$						

Hermening et al., J. Chromatogr. B. BiomedSci.741(2) :129 (2000)

Elimination of Gemfibrozil-³H in Human

Table 1

Fractionation of 0-48 h urinary tritium obtained from 6 human subjects maintained on a 600 mg twice daily dose schedule

	Percentage of d	lose	
Metabolite	Unconjugated	Conjugated	Total
Gemfibrozil	0.26	30.36	30.62
Metabolite I	0.07	1.40	1.47
Metabolite II	0.00	1.65	1.65
Metabolite III	6.95	5.02	11.97
fetabolite IV	0.00	6.78	6.78
otal	7.28	45.21	52.49

Okerholm et al. Proc. Roy. Soc. Med. 29 (2):11 (1976)

Mechanism of CYP2C8 inhibition by Gemfibrozil

Glucuronidation converts Gemfibrozil to a mechanism-based inhibitor of CYP2C8 resulting in an irreversible inhibition.

Tornio-Backman-Exp.Opin. Drug Metab. Toxicol. 13(1):83 (2017)

Ogilvie et al. Drug. Metab. Dispos. 34(1):191 (2006)

Overview of Gemfibrozil ADME in Humans

S+ SimulationsPlus

Parent- Gemfibrozil

Metabolite- Gemfibrozil Glucuronide

Acyl-glucuronide Conversion to Parent in Gut Lumen

- This is not a general solution for compound metabolism in gut lumen (that is coming in GPX)
- It is applicable primarily for acyl-glucuronide metabolites
- It produces parent compound in the lumen for re-absorbtion
- Assumes breakdown of glucuronides so molecular ratio = 1

Outline of Process for Model Development and Documentation

- Creation of GP a project starts with structure import using ADMET Predictor Module for both substrates and perpetrators.
 - Physicochemical, biopharmaceutical, and biochemical properties
 - Initial evaluation via "Chemistry Classification" with all aspects of ADMET
 - Solubility vs. pH, dissolution, absorption (w/ influx and efflux transporters), clearance (metabolic, biliary, and renal), distribution, excretion, and toxicity.
 - Extensive literature collection and spreadsheet documentation.
 - Workbook with multiple sheets for Physicochemical, Metabolic, Transporter, Preclinical, and Clinical single compound and DDI study data for multiple perpetration mechanisms.
 - First simulations for "Measured Properties" with parameter sensitivity analysis.
 - Model building for individual substrate and/or perpetrator simulations compared to observed data for single escalating doses (for nonlinear dose dependence), multiple dosing (for autoinhibition / autoinduction).
 - DDI simulations for all appropriate mechanisms on both substrate and perpetrator.
 - Analysis of results using the "Guest"^{*} criterion for different levels of accuracy cutoff for increasing AUC (inhibition) and decreasing AUC (induction).
 - Preparation of slides and written reports suitable for regulatory submission.

Midazolam BCS/BDDCS II Physicochemical Properties

MW = 325.77

AP 9.5 = ADMET Predictor v. 9.5 S+ = properties predicted with Simulations Plus models S+Sw = native solubility in pure water S+Peff = human jejunal permeability estimate S+LogP = 3.56 (AP 9.5) Exp LogP = 2.7 (Hoffmann-La Roche)

S+pKa = 4.57 (Base) and 0.84 (Base Exp pKa = 6.04 (Andersin-JPharmaceutBioMedAnal-9-6-451-1991)

S+Sw = 2.1 μg/mL @ pH = 7.05 (AP 9.5) Exp Sw = 54 μg/mL @ pH 9.5 Andersin, 1991) LOW

S+FaSSIF = 33 μg/mL, S+ FeSSIF = 210 μg/mL Exp FaSSIF = 11 μg/mL, (personal communication ??)

S+Peff = 7.55 x 10^{-4} (cm/s) (AP 9.5) HIGH Exp Ussing Papp = 3.8E-5 cm/s (Sjoberg-Ungel, 2013) Conversion to Hum. Jej. Peff = 3.82E-4 cm/s

S+HLM-3A4 Km = 21 μ M Vmax = 3.5 nmol/min/mg Prot. (AP 9.5) Exp CYP3A4 Km = 3.7 μ M (Paine, 1997) Exp CYP3A4 Vmax = 0.85 nmol/min/mg Prot. Exp CYP3A4 Km = 2.27 mM (Walsky, 2004) Exp CYP3A4 Vmax = 1.22 nmol/min/mg Prot.

S+hum_fup% = 6.61 (AP 9.5) Exp. Fup = 4.4% Ave. (de Vries, 199) and (Fisher, 1999)

S+RBP = 0.78 (AP 9.5) Exp Rbp = 0.55 (Gertz, 2011)

Papp to Peff Conversion for Ungel Human Ussing Chamber

Papp to Peff Conversion for Caco-2 Papp

	Hum_Peff	Ussing_Papp	Caco-2	Hum_Peff
Compound	(cm/s x 10^4	(cm/s x 10^5	(cm/s x 10^5)	(cm/s x 10^4
Antipyrine	5.6	4.97	6.34	5.6
Atenolol	0.2	0.411	0.019	0.2
Cimetidine	0.26	0.37	0.027	0.26
Mannitol	0.28	0.556	0.044	0.28
Metoprolol	1.34	1.59	1.17	1.34
Propranolol	2.91	3.19	1.8	2.91
Verapamil	6.7	3.6		57
LinMidaz	3.99	3.8	4.74	4.48
Midazolam	3.82	3.8	4.74	4.20

Calibration of Caco-2 Papp

Initial Model for Midazolam 7.5 mg PO Solution Bornemann

- Assumptions:
 - Perfusion-limited midazolam
 - Permeability-limited liver and kidney for 1-OH-midazolam
 - Added MRP3 liver basolateral to efflux metabolite to systemic circulation for PO records only.
 - fu_{ent} = 100%
- Clearance:
 - Paine-J. Pharmacol. Exp. Ther.,
 283:1552 (1997) unbound K_m = 3.7 μM and V_{max} = 0.85 nmol/min/mg micro. Prot.
- Distribution:
 - Midazolam Lukacova default Kp calculation
 - 1-OH-midazolam reduced log P = 2.2 to calc. Kps and then ran simulation with log P = 2.57

Midazolam Binds to Fatty Acid Binding Proteins in Gut and Liver

ABSTRACT

Purpose Several poorly water-soluble drugs have previously been shown to bind to intestinal (I-FABP) and liver fatty acid binding protein (L-FABP) *in vitro*. The purpose of this study was to examine the potential role of drug binding to FABPs on intestinal permeability and gut wall metabolism *in vivo*.

Methods The intestinal permeability of ibuprofen, progesterone and midazolam (which bind FABPs) and propranolol (which does not) was examined using an autoperfused recirculating permeability model in control rats and rats where FABP levels were upregulated via pre-feeding a fat-rich diet.

Results The intestinal permeability of drugs which bind FABPs in vitro was increased in animals where FABP levels were upregulated by prefeeding a high fat diet. The gut wall metabolism of midazolam was also reduced in animals with elevated FABP levels.

Conclusions Consistent with their role in the cellular transport of endogenous lipophilic substrates, FABPs appear to facilitate the intracellular disposition of drug molecules that bind FABPs *in vitro*. Drug binding to FABPs in the enterocyte may also attenuate gut wall metabolism in a manner analogous to the reduction in hepatic extraction mediated by drug binding to plasma proteins in the systemic circulation.

Pharm Res (2011) 28:2176-2190 DOI 10.1007/s11095-011-0446-1

RESEARCH PAPER

Fatty Acid Binding Proteins: Potential Chaperones of Cytosolic Drug Transport in the Enterocyte?

Natalie L. Trevaskis • Gary Nguyen • Martin J. Scanlon • Christopher J. H. Porter

extraction ratio (Table V). It seems likely, therefore, that midazolam binding to FABP in the enterocyte promoted uptake into the cell but reduced drug access to intracellular metabolic enzymes via a reduction in the intracellular free concentration.

drug molecules that bind FABPs *in vitro*. The extent of gut wall metabolism of midazolam is also reduced in animals with elevated FABP levels, suggesting that drug binding to FABPs in the enterocyte may attenuate gut wall metabolism in a manner analogous to the reduction in hepatic extraction mediated by drug binding to plasma proteins in the systemic circulation. Finally, it should be noted that the

PBPK Model for Midazolam 7.5 mg PO Solution Bornemann

• Assumptions:

- Perfusion-limited midazolam
- Permeability-limited liver and kidney for 1-OH-midazolam
- Added MRP3 liver basolateral to efflux metabolite to systemic circulation for PO records only.
- fu_{ent} = 4.4%
- Clearance:
 - Paine-J. Pharmacol. Exp. Ther.,
 283:1552 (1997) unbound K_m = 3.7 μM and V_{max} = 0.85 nmol/min/mg micro. Prot.
- Distribution:
 - Midazolam Lukacova default Kp calculation
 - 1-OH-midazolam reduced log P = 2.2 to calc. Kps and then ran simulation with log P = 2.57

PBPK Model for Midazolam 15 mg PO Solution Bornemann

• Assumptions:

- Perfusion-limited midazolam
- Permeability-limited liver and kidney for 1-OH-midazolam
- Added MRP3 liver basolateral to efflux metabolite to systemic circulation for PO records only.
- fu_{ent} = 4.4%
- Clearance:
 - Paine-J. Pharmacol. Exp. Ther.,
 283:1552 (1997) unbound K_m = 3.7 μM and V_{max} = 0.85 nmol/min/mg micro. Prot.
- Distribution:
 - Midazolam Lukacova default Kp calculation
 - 1-OH-midazolam reduced log P = 2.2 to calc. Kps and then ran simulation with log P = 2.57

PBPK Model for Midazolam 30 mg PO Solution Bornemann

• Assumptions:

- Perfusion-limited midazolam
- Permeability-limited liver and kidney for 1-OH-midazolam
- Added MRP3 liver basolateral to efflux metabolite to systemic circulation for PO records only.
- fu_{ent} = 4.4%
- Clearance:
 - Paine-J. Pharmacol. Exp. Ther.,
 283:1552 (1997) unbound K_m = 3.7 μM and V_{max} = 0.85 nmol/min/mg micro. Prot.
- Distribution:
 - Midazolam Lukacova default Kp calculation
 - 1-OH-midazolam reduced log P = 2.2 to calc. Kps and then ran simulation with log P = 2.57

Midaz. 7.5 mg PO Tab DDI vs. Keto. 400 mg QD for 4 days: Olkkola Baseline Simulation without DDI interactions

• Assumptions:

- Perfusion-limited midazolam
- Permeability-limited liver and kidney for 1-OHmidazolam
- Ketoconazole: 3A4 total Rev. IC_{50} = 26 nM, 3A4
 total Irrev. IC_{50} = 15 nM, Kinact = 0.001 min⁻¹ and
 P-gp total IC_{50} = 5.6 μM
- Reduced fu_{ent} = 4.4% (Ref. Trevaskis-PharmRes-28-9-2176-2011)

Clearance:

- Paine-J. Pharmacol. Exp. Ther., 283:1552 (1997) unbound K_{m,u} = 3.7 μM and V_{max} = 0.977 nmol/min/mg micro. Prot. The 1.15-fold higher clearance was used due to the Olkkola population of 7 females and 2 male subjects.
- Distribution:
 - Midazolam Lukacova default Kp calculation
 - 1-OH-midazolam reduced log P = 2.2 to calc. Kps and then ran simulation with log P = 2.57

Midazolam clinical data from: Olkkola-ClinPharmacolTherap-55-5-481-1994

Ketoconazole clinical data from: Daneshmend-Antimicrobial agents and Chemotherapy-25-1-1-1984 and Olkkola-ClinPharmacolTherap-55-5-481-1994 Ketoconazole TDI parameters from: Haarhoff-Xenobiotica-47-6-470-2017

Midaz. 7.5 mg PO Tab DDI vs. Keto. 400 mg QD: Olkkola AUC Ratio is too low when using only: Reversible IC₅₀ values for 3A4 and P-gp only

• Assumptions:

- Perfusion-limited midazolam
- Permeability-limited liver and kidney for 1-OHmidazolam
- Ketoconazole: 3A4 total Rev. IC₅₀ = 26 nM, 3A4
 total Irrev. IC₅₀ = 15 nM, Kinact = 0.001 min-¹ and
 P-gp total IC₅₀ = 5.6 μM
- Reduced fu_{ent} = 4.4% (Ref. Trevaskis-PharmRes-28-9-2176-2011)

Clearance:

- Paine-J. Pharmacol. Exp. Ther., 283:1552 (1997)
 unbound K_m = 3.7 μM and V_{max} = 0.977
 nmol/min/mg micro. Prot. The 1.15-fold higher
 clearance was used due to the Olkkola population of
 7 females and 2 male subjects.
- Distribution:
 - Midazolam Lukacova default Kp calculation
 - 1-OH-midazolam reduced log P = 2.2 to calc. Kps and then ran simulation with log P = 2.57

Midaz. 7.5 mg PO Tab 1 hr after Keto. 400 mg for 4 days. Using only Reversible IC50s for 3A4 and P-gp

Midazolam clinical data from: Olkkola-ClinPharmacolTherap-55-5-481-1994

Ketoconazole clinical data from: Daneshmend-Antimicrobial agents and Chemotherapy-25-1-1-1984 and Olkkola-ClinPharmacolTherap-55-5-481-1994 Ketoconazole TDI parameters from: Haarhoff-Xenobiotica-47-6-470-2017

In vitro CYP3A Inhibition Parameters (IC_{50,t,HLM}) for Ketoconazole

474 Z. E. Haarho	ff et al.				Xenobiotica, 2017; 47	(6): 470–478
Table 2. Evaluation of	f CYP3A inhibition with H	LM and CLM.				
		HLM			CLM	
		$IC_{50}\;(\mu M)$			IC ₅₀ (µM)	
Inhibitor	Non-preincubation (0 min)	Preincubation (30 min)	Ratio	Non-preincubation (0 min)	Preincubation (30 min)	Ratio
Amprenavir	0.55 ± 0.08	0.084 ± 0.025	6.5	0.3 ± 0.04	0.2 ± 0.03	1.7
Azithromycin	>100	>100	1.0	>100	>100	1.0
Bergamottin	>50	0.17 ± 0.04	>294.1	>50	1.3 ± 0.4	>38.5
Buspirone	>50	15.8 ± 2.9	>3.2	>50	>50	1.0
Cimetidine	>100	>100	1.0	>100	>100	1.0
Clarithromycin	>50	8.2 ± 0.3	>6.1	>50	15.1 ± 0.4	>3.3
Clozapine	>50	21.2 ± 3.7	>2.4	>50	27.2 ± 6.2	>1.8
Cyclosporin A	24.4 ± 5.8	5.8 ± 1.0	4.2	12.0 ± 2.6	7.0 ± 1.5	1.7
Dextromethorphan	>50	>50	1.0	>50	>50	1.0
Diltiazem	43.5 ± 8.6	7.7 ± 1.7	5.6	30.7 ± 4.8	1.4 ± 0.4	21.9
Erythromycin	>100	12.1 ± 3.3	>8.3	>100	54.2 ± 10.2	>1.8
Ethynylestradiol	41.7 ± 1.7	5.2 ± 0.5	8.0	31.4 ± 1.6	4.5 ± 0.8	7.0
Felodipine	4.1 ± 1.3	4.0 ± 0.4	1.0	4.5 ± 1.1	7.4 ± 2.2	0.6
Fluconazole	3.2 ± 0.6	3.7 ± 0.7	0.86	6.8 ± 0.9	6.9 ± 0.6	1.0
Fluoxetine	>50	>50	1.0	>50	>50	1.0
Fluvoxamine	>50	>50	1.0	>50	>50	1.0
Furafylline	>50	>50	1.0	>50	>50	1.0
Irinotecan	>100	>100	1.0	>100	>100	1.0
Isoniazid	>100	>100	1.0	>100	>100	1.0
Itraconazole	0.068 ± 0.017	0.017 ± 0.006	4.0	0.12 ± 0.02	0.054 ± 0.009	2.2
Ketoconazole	0.026 ± 0.010	0.015 ± 0.003	1.7	0.04 ± 0.006	0.056 ± 0.009	0.7
Mibefradil	0.67 ± 0.14	0.017 ± 0.004	39.4	1.0 ± 0.2	0.17 ± 0.04	5.9

 Optimized K_{inact} = 0.001 min⁻¹ was used for irreversible inhibition

Publication supporting competitive and time-dependent inhibition by ketoconazole

Haarhoff-Xenobiotica-47-6-470-2017

Midaz. 7.5 mg PO Tab DDI vs. Keto. 400 mg QD for 4 days: Olkkola

Simulated AUC Ratio w/autoinhibition is accurate by adding: Irreversible IC₅₀ for 3A4

Assumptions:

- Perfusion-limited midazolam
- Permeability-limited liver and kidney for 1-OHmidazolam
- Ketoconazole: 3A4 total Rev. IC₅₀ = 26 nM, 3A4
 total Irrev. IC₅₀ = 15 nM, Kinact = 0.001 min⁻¹ and
 P-gp total IC₅₀ = 5.6 μM
- Reduced fu_{ent} = 4.4% (Ref. Trevaskis-PharmRes-28-9-2176-2011)
- Clearance:
 - Paine-J. Pharmacol. Exp. Ther., 283:1552 (1997) unbound $K_m = 3.7 \mu M$ and $V_{max} = 0.977$ nmol/min/mg micro. Prot. The 1.15-fold higher clearance was used due to the Olkkola population of 7 females and 2 male subjects.
- Distribution:
 - Midazolam Lukacova default Kp calculation
 - 1-OH-midazolam reduced log P = 2.2 to calc. Kps and then ran simulation with log P = 2.57

Midazolam clinical data from: Olkkola-ClinPharmacolTherap-55-5-481-1994

Ketoconazole clinical data from: Daneshmend-Antimicrobial agents and Chemotherapy-25-1-1-1984 and Olkkola-ClinPharmacolTherap-55-5-481-1994 Ketoconazole TDI parameters from: Haarhoff-Xenobiotica-47-6-470-2017

Outline of Process for Model Development and Documentation

- Creation of GP a project starts with structure import using ADMET Predictor Module for both substrates and perpetrators.
 - Physicochemical, biopharmaceutical, and biochemical properties
 - Initial evaluation via "Chemistry Classification" with all aspects of ADMET
 - Solubility vs. pH, dissolution, absorption (w/ influx and efflux transporters), clearance (metabolic, biliary, and renal), distribution, excretion, and toxicity.
 - Extensive literature collection and spreadsheet documentation.
 - Workbook with multiple sheets for Physicochemical, Metabolic, Transporter, Preclinical, and Clinical single compound and DDI study data for multiple perpetration mechanisms.
 - First simulations for "Measured Properties" with parameter sensitivity analysis.
 - Model building for individual substrate and/or perpetrator simulations compared to observed data for single escalating doses (for nonlinear dose dependence), multiple dosing (for autoinhibition / autoinduction).
 - DDI simulations for all appropriate mechanisms on both substrate and perpetrator.
 - Analysis of results using the "Guest"^{*} criterion for different levels of accuracy cutoff for increasing AUC (inhibition) and decreasing AUC (induction).
 - Preparation of slides and written reports suitable for regulatory submission.

Newer DDI Module with "Validated" Field

	[볼 Drug-Drug Interaction Predictions File Current Compound Interacting Compounds Options Help											- 0 X
	C Steady-State Prediction	namic Simulation	Simulation M Single Sim	lode — O Po	o Sim	© DiLisv	n			Run <u>B</u> aseline Simulation Run	Full Simulation	<u>C</u> lose
-Ir	teracting Compound	d(s): ~\$	Standard SS	MBB	202	1-02-	19.n	ndb—				1
	Perpetrator		GEM PO 600 mg D	DI Repa	ag Tornio	D		Þ	•	S	how No <u>t</u> e: Con	s for Interacting npound
F	Perpetrator Parameters —											
	Perpetrator	Enz / Trans	Inh/Ind Const Type	Inh/Ind Const Value	Inh/Ind Const Units	kinact [min-1] /Emax	Select	Validated	In Vitro Fu	In Vitro Fu Type	In vitro F ^ [mg/mL]	<u>3</u> Add Enz/Trans
	Gem Gluc EC Kps Tornio	OATP1B1	Ki-rev-in vitro, U	7.6	uM	0		True	-1	Unknown	0.5	
	Gem Gluc EC Kps Tornio	OATP1B1	IC50-rev-in vitro, U	14	uM	0		False	-1	Unknown	0.5	4 Delete
	Gem Gluc EC Kps Tornio	OATP1B3	IC50-rev-in vitro, U	74	uM	0		False	-1	Unknown	0.5	
	GEM PO 600 mg DDI Repag Tornio	2C8	Ki-rev-in vitro, T	30.4	uM	0	N	True	0.826	Calc(Hallifax)-HLM	0.5	Enzymans
	GEM PO 600 mg DDI Repag Tornio	2C8	IC50-rev-in vitro, T	120	uM	0		False	0.826	Calc(Hallifax)-HLN	0.5	
	GEM PO 600 mg DDI Repag Tornio	2C9	IC50-rev-in vitro, T	30	uM	0		False	0.826	Calc(Hallifax)-HLM	0.5	
	GEM PO 600 mg DDI Repag Tornio	2C9	Ki-rev-in vitro, U	4	uM	0		False	-1	Unknown	0.5	(?))
	GEM PO 600 mg DDI Repag Tornio	2C9	Ki-rev-in vitro, T	5.8	uM	0		True	0.826	Calc(Hallifax)-HLM	0.5	
		NTCD		100	1.3				-			
	Dosing Information ———				1				- Rat	e Constants [1,	/h] ——	
	Dose [mg]: 600		Int [h]: 12			CL [L/h]	: 11.2;	28		ka: <mark>0</mark>	k	kel: 0.98989
	Reference PK model: HumAnneMalHIthy28Y0_79kg_24BMI-Tornio ACAT model: Hum Phys Fasted Tornio											
	Optional Settings: Show RELEVANT Interacting Cmpds Recognize Enzyme F	amilies: ON Total-Unbound	Ki Conversion: ON									

Repaglinide PO 2.5 mg on Day 3 after 5 doses of GEM 600 mg PO

Ki values selected are:

- 1.) 12.5 uM for OATP1B1 (Gemfibrozil parent)
- 2.) 7.6 uM for OATP1B1 (Glucuronide)
- 3.) 30.4 uM for the CYP2C8 (Reversible) for the parent and
- 4.) 20 uM for Irrev inhibition and Kinact= 0.21 min⁻¹ of CYP2C8 for the Glucuronide
- 5.) 3.4 uM for the OAT3 (Rev inhibition) for the parent and
- 6.) 9.9 uM for the OAT3 (Rev inhibition) Glucuronide
- 7.) 5.8 uM for the CYP2C9 (Rev Inhibition) by Parent

Repaglinide record: Repaglinide_PO_0.25mg_Gem 600 mg GEM Record:GEM PO 600 mg DDI Repag Tornio GEM-Gluc record: Gem-Gluc EC Kps Tornio Gemfibrozil was dosed with DDI module (600 mg, BID dosing interval) Observed data for GEM and GEM gluc and Repaglinide before and after DDI in the plot is from Tornio et. al., 2008

Tornio et. al., Clin. Pharmacol. Thera. 84(3):403(2008)

Outline of Process for Model Development and Documentation

- Creation of GP a project starts with structure import using ADMET Predictor Module for both substrates and perpetrators.
 - Physicochemical, biopharmaceutical, and biochemical properties
 - Initial evaluation via "Chemistry Classification" with all aspects of ADMET
 - Solubility vs. pH, dissolution, absorption (w/ influx and efflux transporters), clearance (metabolic, biliary, and renal), distribution, excretion, and toxicity.
 - Extensive literature collection and spreadsheet documentation.
 - Workbook with multiple sheets for Physicochemical, Metabolic, Transporter, Preclinical, and Clinical single compound and DDI study data for multiple perpetration mechanisms.
 - First simulations for "Measured Properties" with parameter sensitivity analysis.
 - Model building for individual substrate and/or perpetrator simulations compared to observed data for single escalating doses (for nonlinear dose dependence), multiple dosing (for autoinhibition / autoinduction).
 - DDI simulations for all appropriate mechanisms on both substrate and perpetrator.
 - Analysis of results using the "Guest"^{*} criterion for different levels of accuracy cutoff for increasing AUC (inhibition) and decreasing AUC (induction).
 - Preparation of slides and written reports suitable for regulatory submission.

Eleanor J. Guest et al. DMD, 39(2):170 (2011)

Repag. PO 0.25 mg on Day 3 after GEM PO 600 mg BID

GastroPlus(TM) 9.8.1003	2/23/2021	11:56:12 PM					
Compound 1:	Victim						
Database:	Repaglinide-GP9.8-DDI-Standard-2021-01-13.mdb						
Record:	Repag PO 0	.25mg DDI Ge	m 600mg-1	ornio2008			
Compound 2:	Perpetrator: Gemfibrozil 600 mg PO BID for 5 doses						
Database:	Gemfibrozi	.mdb					
Record:	GEM PO 600) mg DDI Repa	g Tornio				
[NewTable]	Dynamic Sir	mulation Resu	ults				
				Cmax		AUC(0-t) [ng-	AUC(0- inf) [ng-
Compound	Fa [%]	FDp [%]	F [%]	[ug/mL]	Tmax [h]	h/mL]	h/mL]
Repag PO 0.25mg DDI Gem 600mg-Tornio2008-baseline	100	80.74	51.87	0.00239	48.6	5.076	5.079
GEM PO 600 mg DDI Repag Tornio-baseline	109.1	106.7	96.15	27.08	37.3	348000	348000
Gem Gluc EC Kps Tornio-baseline	0	0	0	14.57	50.5	229000	229000
Repag PO 0.25mg DDI Gem 600mg-Tornio2008-DDI	100	80.63	72.99	0.00512	49.2	29.47	31.12
GEM PO 600 mg DDI Repag Tornio-DDI	109.1	106.7	96.74	27.98	37.3	397000	397000
Gem Gluc EC Kps Tornio-DDI	0	0	0	19.25	50.6	310000	310000
Repag PO 0.25mg DDI Gem 600mg-Tornio2008-ratio	1	0.999	1.407	2.142	1.012	5.806	6.127
GEM PO 600 mg DDI Repag Tornio-ratio	1	1	1.006	1.033	1	1.141	1.141
Gem Gluc EC Kps Tornio-ratio	0	0	0	1.321	1.002	1.354	1.354

			Time from the last	ime from the last gemfibrozil dose					
Variable	Control	0 h	3 h	6 h	12 h				
Repaglinide									
C _{max} (ng/ml)	3.7±2.7	8.1±3.2***	7.2 ± 2.3***	8.3 ± 2.8***, [‡]	8.1 ± 2.4***, [‡]				
Fold (range)		2.2 (1.4–2.9)	1.9 (1.1–2.9)	2.2 (1.1-3.4)	2.2 (1.2–3.3)				
<i>t</i> _{1/2} (h)	1.2±0.2	3.0±0.4***	2.7±0.3*** ^{,†}	$2.4 \pm 0.2^{***,\dagger}$	2.0±0.3*** ^{,†++,‡}				
Fold (range)		2.6 (1.9–4.3)	2.3 (1.7–3.7)	2.1 (1.6–3.3)	1.7 (1.5–2.6)				
AUC _{0–9 h} (ng·h/ml)	4.8±4.3	29.3 ± 7.7***	27.8±9.4***	27.5 ± 8.6***	22.9 ± 7.4***, ^{††,‡}				
Fold (range)		6.1 (2.6–12)	5.8 (2.5–13)	5.7 (2.5–9.2)	4.7 (2.1–7.8)				
AUC _{0-∞} (ng·h/ml)	4.9±4.4	34.2±9.3***	31.5±11.2***	30.2 ± 9.3***	24.5 ± 8.2***, ^{++,‡,} ¶¶				
Fold (range)		7.0 (2.9–14)	6.5 (2.8–15)	6.2 (2.7-10)	5.0 (2.2-8.5)				

	Observed	Simulated		Cmax	AUC(0-t)
Cmax Ratio	2.2	2.1	Guest Method Limit	1.66	1.88
AUC(0-t) Ratio	6.1	5.8	Upper Limit	3.65	11.45
			Lower Limit	1.33	3.25

Observed DDI ratio for Repaglinide AUC $_{0-t}$ = 6.1 Predicted DDI ratio for Repaglinide AUC $_{0-t}$ = 5.8

Midazolam DDI vs. Fluconazole

		Variability	1.25	Guest Lin	nits				log Limits		
	Obs Ratio	Variability (CV)	Limit	Upper	Lower	Unity	2-fold(+)	2-fold(-)	UL	ш	Center
of	0.10	1.25	1.93	0.19	0.05	0.10	0.20	0.05	-0.28	0.28	0
-10 al	0.13	1.25	1.91	0.24	0.07	0.13	0.25	0.06	-0.28	0.28	0
0 2	0.25	1.25	1.81	0.45	0.14	0.25	0.50	0.13	-0.26	0.26	0
rati	0.33	1.25	1.75	0.58	0.19	0.33	0.67	0.17	-0.24	0.24	0
<u>e</u>	0.50	1.25	1.63	0.81	0.31	0.50	1.00	0.25	-0.21	0.21	0.00
	1.00	1.25	1.25	1.25	0.80	1	2.00	0.50	0.10	-0.10	0
	2.00	1.25	1.63	3.25	1.23	2	4.00	1.00	0.21	-0.21	0
	3.00	1.25	1.75	5.25	1.71	3	6.00	1.50	0.24	-0.24	0
	4.00	1.25	1.81	7.25	2.21	4	8.00	2.00	0.26	-0.26	0
	8.00	1.25	1.91	15.25	4.20	8	16.00	4.00	0.28	-0.28	0
	10.00	1.25	1.93	19.25	5.19	10	20.00	5.00	0.28	-0.28	0

Guest Cr	iteria for K	i = 15 uM			Guest C	riteria for Ki	= 15 uM		
CV	Limit	Up Lim	Low Lim	Predicted	cv	Limit	Up Lim	Low Lim	Predicted
Cmax					AUC0-t				
1.25	1.67	3.84	1.37	2.07	1.25	1.80	6.70	2.07	3.69
1.25	1.58	2.82	1.13	1.86	1.25	1.78	6.13	1.93	3.23
1.25	-	-	-	-	1.25	1.57	2.73	1.11	1.79
Guest Cri	iteria for Ki	i = 7.4 uM			Guest Cr	riteria for Ki	= 7.4 uM		
CV	Limit	Up Lim	Low Lim	Predicted	CV	Limit	Up Lim	Low Lim	Predicted
Cmax					AUC0-t				
1.25	1.67	3.84	1.37	2.57	1.25	1.80	6.70	2.07	6.19
1.25	1.58	2.82	1.13	2.32	1.25	1.78	6.13	1.93	5.50
1.25	-	-	-	-	1.25	1.57	2.73	1.11	2.37

Using Guest Plot to Optimize Rifampicin Induction Parameters for GP9.8.1

AutoSan Off 2	6	5	÷	B Rifa	impicin ind	uction opt	imization-V	/L-2021-02-`	19.xlsx 👻		🔉 Search		Q										Michael Bo	ZP MB	æ ·	/×/
File Home Insert D	Praw Pa	age Layout	t Form	ulas I	Data F	Review	View	Add-ins	Help																🖻 Share	Convents
Default	New 5	∎ E Options	- [N	ormal Pag	ge Break Preview	Page C Layout	ustom Views	Rule	r 🗹 Fo	ormula Bar eadings	Zoom	100%	Zoom to Selection	New Window	Arrange Free All Pane	eze 2	Split Hide Unhide	ඩ්ඩ් Vie Iඩ්(Syr මිල Res	ew Side by S achronous set Window	Side Scrolling Wi v Position	Switch ndows ~	Macros				
Sheet View	v			١	Workbook \	/iews			Show			Zoom					Win	dow				Macros				~
T1 x : X ./	£																									
	<i>Jx</i>																									
B	D	E	F	G	н	- I	J	К	L	M	N	0)	Р	Q	R	S	Т	U	V	W X	Y	Z	AA	AB	AC AD 🔺
1					simulatior OATP indu	ns with action	simulatio OATP indu	ns with uction	simulations v induction	vithout OAT	P simulat OATP in	ions without duction	t pl O	B with fixed Kas/simulatio ATP induction	ns without											
2			old N		New Mode	el: Emax	New Mode	el: Emax	New Model:	EC50/Emax	- New M	odel: EC50/E	max -	New Model:	EC50/Emax -						on nointe	PO	blue p	ointo IV		
2			Old IV	pred/obs	= 4	7.5 pred/obs		25 pred/obs	0.0	5/11		0.06/14	/obs	0.06	4/15					gre	en points		blue po	onites - IV		
3 study name	Dose	obs DDI	pred DDI	DDI	pred DDI	DDI	pred DDI	DDI	pred DDI	pred/obs [DDI pred [DI DI	DI	pred DDI	pred/obs DDI											
4 MID - Backman PO	600	0.041	0.058	1.41	0.023	0.56	0.054	1.31	0.053	3										Now Model	0.06/14				Now Mod	al: 0.02/11
5 MID - Kharash IV	600	0.540	0.562	1.04	0.538	1.00	0.581	1.08	0.572	2		New	Model	: 0.064/15					1	New Would	. 0.00/14			1	New WIDU	ei. 0.03/11
6 MID - Kharash PO	600	0.053	0.049	0.93	0.028	0.53	0.056	1.06	0.055	· •	¹ T				11			.0	^			151	.9	-		
7 MID - Link IV	600	0.655	0.573	0.87	0.543	0.83	0.597	0.91	0.585	ati								rat				1	rat			
8 MID - Link PO	600	0.016	0.073	4.69	0.035	2.25	0.074	4.76	0.072	ີ ບໍ					and the second s			2			~		5			
9 MID - Chung PO	600	0.124	0.066	0.53	0.033	0.27	0.068	0.55	0.067	A								₹ 0	.1		//		A	0.1 -	1	
10 MID - Kirby PO simul	600	0.097	0.207	2.14	0.061	0.63	0.132	1.36	0.141	l b	0.1	• -	~					teo	•		and the second se		ted	•		
11 MID - Kirby PO stagg	600	0.081	0.051	0.63	0.027	0.33	0.05	0.67	0.054	<u>ic</u>			<u> </u>	2				dic.		~/.	-		dic		- / .	
12 MID - KIrby IV stagg	600	0.445	0.543	1.22	0.519	1.17	0.563	0.41	0.554	ed	-	~/						Lee		/			rec		/	
14 MID - Gorski PO OF	600	0.100	0.044	0.41	0.021	0.20	0.044	0.41	0.045			/	-					0.0					J ° ,	.01		
15 MID - Gorski PO OM	600	0.107	0.042	0.59	0.022	0.21	0.047	0.44	0.044	,	0.01 +					'			0.01		0.1		1	0.01		0.1
16 MID - Gorski PO YM	600	0.078	0.040	0.60	0.022	0.20	0.049	0.63	0.047	2	0.01			0.1	1					Observe	d ALIC ratio		-		Obsor	ved ALIC ratio
17 MID - Gorski IV OF	600	0.438	0.595	1.36	0.572	1.31	0.609	1.39	0.603			(Observ	ed AUC rati	0			-		Observe	u AUC Iali	5			Obser	veu AUC Tatio
18 MID - Gorski IV OM	600	0.475	0.564	1.19	0.544	1.14	0.587	1.23	0.574	i —						_										
19 MID - Gorski IV YF	600	0.375	0.546	1.45	0.519	1.38	0.562	1.50	0.556	5		New	Model	: 0.064/15					1	New Model:	0.06/14		-	1	New Mod	el: 0.03/11
20 MID - Gorski IV YM	600	0.512	0.543	1.06	0.519	1.01	0.564	1.10	0.553	3	2.50							2.50	⁰ —				2.	.50		
21 TRZ - Villikka	600	0.050	0.079	1.58	0.037	0.74	0.083	1.66	0.082	2								_ 2.00	, .					00		
22 ALF - Kharasch 1997 IV	600	0.361	0.49	1.36	0.461	1.28	0.523	1.45	0.507		2.00							Q 2.00					ā ²	.00		
23 ALF - Kharasch 2004 IV	600	0.375	0.46	1.23	0.432	1.15	0.484	1.29	0.472		1.50			•				g 1.50	o	• •	•••		s 1	50	•	
24 ALF - Kharasch 2004 PO	600	0.046	0.055	1.21	0.025	0.55	0.058	1.27	0.058	s é	3		·		••••••			Ö.		·····			9	•••••		·····
25 ALF - Kharasch 2011 5mg IV	5	0.791	0.882	1.12	0.922	1.17	0.954	1.21	0.881		1.00	•		•	• •			ਤੂ 1.00	, <u> </u>					.00		
26 ALF - Kharasch 2011 10mg IV	10	0.712	0.81	1.14	0.865	1.22	0.916	1.29	0.809		6 50 L		•					ام 0.50	,				ď ľ	.50		
27 ALF - Kharasch 2011 25mg IV	25	0.564	0.697	1.24	0.75	1.33	0.829	1.47	0.695	5	3.30		•••										Í II Ö.			
28 ALF - Kharasch 2011 75mg IV	75	0.474	0.577	1.22	0.593	1.25	0.683	1.44	0.579)	0.00							0.00	D —		-		J 0.	.00 +		
29 ALF - Kharasch 2011 5mg PO	5	0.692	0.491	0.71	0.338	0.49	0.507	0.73	0.481	L	0		10	20	30				0	10	20	30		0	10	20
30 ALF - Kharasch 2011 10mg PO	10	0.555	0.387	0.70	0.271	0.49	0.432	0.78	0.381	L			Stud	v Number						Study	Number		-		Stu	dy Number
31 ALF - Kharasch 2011 25mg PO	25	0.295	0.259	0.88	0.181	0.61	0.322	1.09	0.249	•			oraa	,		_										,
32 ALF - Kharasch 2011 75mg PO	75	0.123	0.147	1.19	0.092	0.75	0.188	1.52	0.138		.12 0	.158	1.28	0.166	1.35											
33 ALF - Kharasch 2011 600mg IV	600	0.353	0.458	1.30	0.431	1.22	0.482	1.37	0.47	1	.33 0	.472	1.34	0.472	1.34											
34 ALF - Kharasch 2011 600mg PO	600	0.050	0.053	1.06	0.024	0.48	0.055	1.10	0.055	9 1	.10 0	.054	1.08	0.054	1.08											
26																										
									_	-	_											_				· · · · · ·
Emax search-va	alidation	new Rif	f model - E	C50-Ema	x searc	EC50-E	max searc	h validatio	n Summ	ary1 20	8 Ref	ines for Plo	ots S	Sheet2	+					4						Þ
										_											Dicator	Cettin or		a m		+ 0.09/
																					- approsphay :	secongs				- 50/0

Outline of Process for Model Development and Documentation

- Creation of GP a project starts with structure import using ADMET Predictor Module for both substrates and perpetrators.
 - Physicochemical, biopharmaceutical, and biochemical properties
 - Initial evaluation via "Chemistry Classification" with all aspects of ADMET
 - Solubility vs. pH, dissolution, absorption (w/ influx and efflux transporters), clearance (metabolic, biliary, and renal), distribution, excretion, and toxicity.
 - Extensive literature collection and spreadsheet documentation.
 - Workbook with multiple sheets for Physicochemical, Metabolic, Transporter, Preclinical, and Clinical single compound and DDI study data for multiple perpetration mechanisms.
 - First simulations for "Measured Properties" with parameter sensitivity analysis.
 - Model building for individual substrate and/or perpetrator simulations compared to observed data for single escalating doses (for nonlinear dose dependence), multiple dosing (for autoinhibition / autoinduction).
 - DDI simulations for all appropriate mechanisms on both substrate and perpetrator.
 - Analysis of results using the "Guest"^{*} criterion for different levels of accuracy cutoff for increasing AUC (inhibition) and decreasing AUC (induction).
 - Preparation of slides and written reports suitable for regulatory submission.

Written Report of Model Development and Validations

PBPK MODEL: RIFAMPICIN

Development of a Whole-Body Physiologically Based Pharmacokinetic Model of Rifampicin and Model Validation with Known Drug-Drug Interactions (Midazolam, Triazolam, Rosiglitazone, Repaglinide, Voriconazole)

Suvarchala Avvari, Viera Lukacova, Michael B. Bolger

1. Introduction

A whole-body physiologically based pharmacokinetic (PBPK) model of rifampicin (RIF) was developed accounting for the enzymes involved in the auto-induction and metabolism of RIF such as (CYP3A4, CYP2C8, CYP2C9, UGT1A3), active uptake transporter (OATP1B1), and efflux transporter (MRP2) for the prediction of known drug-drug interactions (DDIs) with midazolam (MDZ), triazolam, and rosiglitazone substrates using GastroPlus[®] version 9.8 (Simulations Plus, Inc.). The model was developed to capture the different *in-vivo* mechanisms involved in the absorption, distribution, metabolism, and elimination of RIF. PBPK models parameterized with *in silico, in vitro,* and *in vivo* data have been extensively used to evaluate the potential for DDIs, arising due to enzyme and/or transporter induction and reversible or irreversible time-dependent inhibition (Zhang et al. 2020). The current report describes a model of RIF built using GastroPlus that includes all the relevant enzyme and transporter related mechanisms for DDI modeling of novel substrates and perpetrators.

2. Model Development (GastroPlus v.9.8) of Rifampicin and Parameter Input Selection

In this study, PBPK models of RIF were built using the *in vitro* data when possible. Plasma concentration-time (C_p-time) profiles of published clinical studies covering the full reported dosing range were used for model development in both healthy subjects and tuberculosis (TB) patients. In some studies, the information regarding the amount of unchanged drug excreted in urine was available and it was utilized to inform the model optimization. All clinical studies used for model development in healthy subjects and TB patients are listed in Table 1 with descriptions pertaining to the study. Simulations were carried out using age, sex, weight, and body mass index (BMI) that matched the corresponding clinical studies. If information regarding the demographics of the study population was not available, a reasonable assumption was made to describe the individual and population physiology of each study.

PBPK MODEL: RIFAMPICIN

Table 1. Clinical PK Data used for RIF PBPK Model Calibration and Qualification

Study Type	Description	Reference
Rifampicin		
Pharmacokinetic (PK) study of intravenous (IV) RIF	The time course of the serum and urine concentrations of RIF were evaluated during and after IV administration of RIF in healthy subjects. Dose levels of 300 mg, 450 mg, and 600 mg as IV infusions (3 hr) in 500 mL of glucose solution.	(Nitti et al. 1977)
Population PK modeling of RIF	Subjects fasted from 10 p.m. before the doses were given until 4 hr afterward. Water was allowed until 2 hr before the doses were administered. On the study day, 2 capsules (each containing 300 mg of RIF) were administered. The C _p -time profiles were measured in twenty-four healthy male subjects.	(Peloquin et al. 1997)
PK of oral (PO) and IV RIF during chronic administration in TB patients.	After overnight fasting, the subjects ingested 600 mg of RIF for either PO or IV infusion (1 hg). The solution for the RIF infusion was prepared by dissolving the content of a 600 mg vial in 10 mL of solvent, which was transferred into 500 mL isotonic saline solution. Both the PO and IV PK of RIF were measured on Days 1-2, Days 8-9, and Days 22-23 in 12 TB subjects.	(Loos et al. 1985)
PK study of RIF	The study was carried out in 18 healthy subjects. RIF was administered as 300 mg capsules and the treatment lasted for 14 days. Three dose levels were investigated: 900 mg and 600 mg in a single dose, and 600 mg divided daily into 2 doses of 300 mg each. The plasma concentrations of RIF were measured on Days 1, 4, 6, and 14.	(Acocella et al. 1971)
DDI studies used for model veri	fication	
DDI study of the effect of RIF PO 600 mg on the PK of MDZ PO (3 mg) and IV (1 mg) in healthy subjects	For the study of hepatic and intestinal CYP3A4 induction, RIF (INN, rifampicin) (600 mg) was administered orally at bedtime for 5 days; 1 mg IV MDZ was then administered, followed 1 χ_1 later by administration of 15 μ g/kg IV Alfentanil (ALF), RIF at bedtime, and on the next day 3 mg PO MDZ with 50 mL apple juice, followed 1 μ_1 later by 60 g/kg oral ALF.	(Kharasch et al. 2004)
The effect of RIF treatment on the PK and pharmacodynamics (PD) of MDZ PO (15 mg) in healthy subjects	The subjects were given PO doses of either 600 mg RIF (two 300 mg capsules) or matched placebo once daily at 8 PM for 5 days. On Day 6, a 15 mg tablet of MDZ was ingested with 150 mL water at 1 PM, that is, 17 hrs after	(Backman, Olkkola, and Neuvonen 1996)

Written Report of Model Development and Validations

Reference		Substrate Dose	Obs	erved#	Simulated			
		and Regimen	Cmax (ng/mL)	AUC _{0-t} (ng*hr/mL)	Cmax (ng/mL)	AUC _{0-t} (ng*hr/mL)		
(Varhe, Olkk	cola et al. 1994)	0.25 mg single dose triazolam tablet	1.5 ± 0.2	5.9 ± 0.7	1.49	8.86		
(Greenblatt, 1998)	Wright et al.	0.25 mg single dose triazolam tablet	2.6±0.3	10.6 ± 1.6 ^{\$}	1.82	11.06\$		
(Olkkola, Ba 1994)	ckman et al.	7.5 mg PO midazolam	22 ± 6	65±10\$	25	82.99 ^{\$}		
*Observed val Table 7	ues are from the	average of individua	l values, and repre	esent mean \pm stand	lard error; ^s rej	present AUC _{0-i}		
able /	Parameters (of Triazolam and	Midazolam Wi	th or Without ('o-administ	ration of		
	I al ameters (of filazoiam anu			o-aummist			
	Ketoconazol	e						
Reference	Ketoconazol Substr	e rate		Cmax (ng/mL)	AUC _{0-t} (ng	*h/mL)		

Reference	Substrate		Cmax (ng/mL)	AUC _{0-t} (ng*h/mL)
(Varhe, Olkkola et	Triazolam	Observed baseline#	1.5 ± 0.2	5.9 ± 0.7
al. 1994)		Simulated baseline	1.49	8.86
		Observed DDI #	4.6 ± 0.5	48.1 ± 5.3
		Simulated DDI	4.24	55.82
		Observed DDI ratio#	3.07	8.1
		Simulated DDI ratio	2.85	6.3
(Greenblatt, Wright	Triazolam	Observed baseline#	2.6 ± 0.3	$10.6 \pm 1.6^{\$}$
et al. 1998)		Simulated baseline	1.82	11.06\$
		Observed DDI #	5.4 ± 0.4	145.4 ± 39.1 ^{\$}
		Simulated DDI	4.71	142.6 ^{\$}
		Observed DDI ratio#	2.1	13.7\$
		Simulated DDI ratio	2.59	12.9\$
(Olkkola, Backman	Midazolam	Observed baseline#	$22 \pm 6^{\$}$	65±10\$
et al. 1994)		Simulated baseline	25	82.99 ^{\$}
		Observed DDI#	90 ± 7	1033.38
		Simulated DDI	96	1300.7\$
		Observed DDI ratio	4.09	15.9 ^{\$}
		Simulated DDI ratio	3.84	15.7\$

*Parameters are from the average of observed individual values and represent mean ± standard error; srepresent AUC_{0-inf}, the simulated DDI ratios were highlighted in green while observed DDI ratios were highlighted in blue.

Ketoconazole (400 mg) was administered for four doses, and 0.25 mg triazolam was given at 3 PM after the fourth dose of KCZ (given at 2 PM) (Varhe, Olkkola et al. 1994).

The open squares and error bars represent the mean observed data and coefficient of variation, respectively, and the simulated (line) C_p-time profiles for triazolam (red) and ketoconazole (purple). The simulated CYP3A4 activity in liver is highlighted in green, and the simulated

Conclusions

- The GP DDI Standard Update Project Team have made significant advances in the ability to simulate complex mechanistic drug-drug interactions involving enzymes, transporters, and enterohepatic circulation.
- Now DDI simulations will be accomplished with a full database of validation study records for both substrates and perpetrators
- We provide extensive literature references, data compilation, slides, and written documentation and GastroPlus model files that can be used for regulatory submissions
- When documentation is in a complete draft form, all components are scientifically reviewed and formatted as a complete package for regulatory review of novel compound results.
- All complete models will be available for download by registered GP license holders.

Acknowledgements

DDI Standards Update Team

Revathi Chapa Tarang Vora Georgy Hartman Joyce Macwan Naveed Shaik Grace Fraczkiewicz Yujuan Zheng Jin Dong Saima Subhani Suvarchala Avvari Jeremy Perrier

Simulation Technologies Team

Haiying Zhou (TL) Jim Mullin Ke Xu Szeto Jessica Spires Maxime Le Merdy Manas Shah

With support from:

Viera Lukacova, Ph.D. (Chief Scientist) Neil Miller (VP Simulation Sciences) Andrew Mueller (Project Management) Arlene Padron (Corp. Marketing Director)

and other teams at Simulations Plus:

Computational Technologies Consulting Studies Cheminformatics

Model-Informed Drug Development

Questions & Answers

2021 Virtual Conference

For more information about the DDI Standards project email **info@simulations-plus.com**

Register for the 2021 MIDD+ Scientific Conference on March 3rd and 4th. **Bookmark my talk**, on March 3rd at 1:05 PM. <u>https://www.accelevents.com/e/SLPMIDD</u>

Learn More! www.simulations-plus.com

St SimulationsPlus
Cognigen | DILlsym Services | Lixoft