

SCIENCE + SOFTWARE = SUCCESS

Mechanistic Modeling of *in vitro* Assays to Improve *in vitro/in vivo* Extrapolation

Grace Fraczkiewicz Viera Lukacova Jim Mullin

OVERVIEW

- MembranePlus[™] a software platform for simulation of *in vitro* transport • assays:
 - **Mechanisms**
 - Inputs
 - Models _
- **Case Studies** \bullet
 - In vitro model validation
 - In vitro/in vivo extrapolation

MembranePlus^{**}

in vitro permeability & hepatocyte modeling

Copyright 2018 Simulations Plus, Inc. All rights reserved

MECHANISMS: TRANSWELL

S+ SimulationsPlus

MECHANISMS: SANDWICH HEPATOCYTES

- Collagen is assumed to not affect transport processes
- Model is also applicable for plated hepatocytes when bile volume is not considered

S + SimulationsPlus

MECHANIMS: SUSPENDED HEPATOCYTES

S+ SimulationsPlus

INPUTS: COMPOUND PROPERTIES

mbranePlus(TM): C:\Llsers\Public\Simulations Plus_Inc\MembranePlus2 0\Test mo

Physicochemical properties (*in vitro* or *in silico*)

Enzyme and transporter settings applicable only to cell based assays

	_													
<u>F</u> ile	<u>E</u> dit	<u>D</u> atabase	Simulation	Setup	Too <u>l</u> s	M <u>o</u> dul	les <u>H</u> el	, 						
	C	ompound		Exp	er <u>i</u> ment	al Se	etup		Si <u>m</u> u	lation		<u>G</u>	iraph	
	Selec	ted Comp	o <u>u</u> nd ——						. ver 2	0.0011				
		Propranolol				- I			- Supp	ort Files				
I		Current Reco	ord: 1; Total F	Records	s: 8		Propranol	ol.apd						
		٩	\sim	(сн <u>,</u> Сн,		1 - 242 - 1	o						
		~	Óн	н			Innual	Concent	rauu	ns				
			וי ט				Done	or Conc. [J	ι Μ] :	1		Total [μg]:	0.06095	
		\square	ļ				Reco	eiver Conc	:. [μM]]: 0.		Total [µg]:	0.	
							Passi	ve Trans	sport	Model				
- I	Molecu	lar weight [g/mol]:		259.35		Str	ucture Ba	sed M	odel For	Membran	e Entry/Exit	Rates	
	5 olubili	ty (mg/mL (@рН = 10.7	′ 4]:	2.73			Structure		Li	near	-	?	D
	pH for I	Reference \$	Solubility		10.74			Properties	\$	Loef	ficients			F
 	ogP (n	eutral): 2	.98 @	pH:	-1.	-			1	ntercept	-1.4227	VI [Cm/	sj: 0.0817	/3
🔺 I	Diff. Ca	eff. [cm^2/	'sec x 10^5]	:	0.77	-	Log	P 2.98		C1	0.66671	Vo [cm/	\$]: 5.791E	:-5
		- 1	- Ka Table				M_RN	G 0		C2	-0.65202	Vi+ fact	or: 0.0216	6
		P.					HBD	н 🛛 = нв	D 2	C3	-1.669	Vo+ fact	or: 0.9828	35
		Enz	yme Tabl	e			НВА	0 2		C4	-0.82587	Vi- fact	or: 1.	
		Tra <u>n</u> s	sporter Ta	ble								Vo- fact	or: 1.	
Heik	Heikkinen et al. JPET 328:882-892, 2009													
All pr	operties	except experi	imental LogP a	and pKa	a were calcu	ulated t	oy ADME1	Predictor 7	.0					
Ppar	a: Zhim	BSA:	OFF	Loss: /	OFF	San	npling: OF	F						
														/

St SimulationsPlus

INPUTS: EXPERIMENTAL SETTINGS

Experimental Setup specific for selected Membrane type (cell monolayers, PAMPA, sandwich hepatocytes, suspended hepatocytes)

Additional compound/assay specific settings

<u>C</u> ompound	Experimental Setur	Simulation	Graph			
	P	ropranolol				
Membrane Model:		Experimental Setup ———				
CACO-2 96 well	•	Shaking rate [rpm]:	320			
Apical Fluid Cor	npartment	Apical volume (mL):	0.075			
Transwell Insert		Apical dead volume [mL]:	0			
		Basolateral volume [mL]:	0.235			
Tissue	The second secon	Cell culture time [days]:	21			
Well Plate		Apical pH:	7.4			
Basolateral Flui	d Compartment	Basolateral pH:	7.4			
Drug Administratio	on Compartment —	Filter Area [cm^2]:	0.143			
O Apical Side	Basolateral Side	Filter Pore Size [µm]:	0.4			
Sampling	Setup	Filter Pore Density [Pores/cm ²]:	1.0E+8			
		Filter Membrane Depth [µm]:	10.			
Protein Bindi	ng Setup	Diff. Layer Thickness. [µm]:	0.			
Compound Loss Setup						
Heikkinen et al., JPE F 328:882-892, 2009 All properties except experimental LogP and pKa were calculated by ADMET Predictor 7.0						

St SimulationsPlus

MODELS: MEMBRANE ENTRY/EXIT RATE STRUCTURE BASED MODEL

• Observed vs. Predicted on 44 training datasets

 $log(V_i) = Intercept + C1 \times logP + C2 \times M RNG + C3(HBDH - HBD) + C4 \times HBAO$

cations are determined based on logD vs. pH profile

St SimulationsPlus

MODELS: LYSOSOMAL TRAPPING

Fig. 1. The basis of pH partitioning of hpophilic animes into hysosomes. The diagram illustrates the mechanism by which lipophilic amines (i.e., CADs) accumulate in lysosomes. From plasma (pH 7.4) and cytosol (~7.2), a lipophilic amine (log P > 1, $pK_a > 6.5$) will readily diffuse across membranes in its unionized form (RNH₂) while maintaining Henderson-Hasselbach equilibrium with its ionized form (RNH₃⁺, which cannot readily diffuse across membranes). After diffusion into the acidic environment of the lysosome (pH 4–5), the equilibrium between charged and uncharged species shifts in favor of the ionized form of the lipophilic amine, limiting diffusion of the drug back into the cytosol and, in effect, trapping the drug in lysosomes. For highly permeable lipophilic amines, the concentration of unionized drug (RNH₃) at equilibrium is assumed to be the same in all three compartments (lysosomes, cytosol, and plasma). The figure is not to scale; lysosomes make up about 1% of the hepatocyte volume.

S⁺SimulationsPlus

MODELS: ENZYMES AND TRANSPORTERS

• Kinetics of carrier-mediated transport and metabolism is calculated using Michaelis-Menten kinetics:

$$U_{metab} = \sum_{i} \left(\frac{V_{\max}^{i} \times c_{u}^{\text{intracell}}}{K_{m}^{i} + c_{u}^{\text{intracell}}} \right) \qquad \mathcal{O}_{efflux} = \sum_{i} \left(\frac{V_{\max}^{i} \times c_{u}^{\text{intracell}}}{K_{m}^{i} + c_{u}^{\text{intracell}}} \right)$$

$$\upsilon_{influx} = \sum_{i} \left(rac{V_{\max}^{i} imes c_{u}^{buffer}}{K_{m}^{i} + c_{u}^{buffer}}
ight)$$

- V_{max} units: μM/s (mmol/L/s)
- K_m units: µM (mmol/L)
- General units converter allows converting these into different types of units
- Transporter types: Influx and Efflux
- Transporter locations: Apical and Basolateral (where applicable)

Case Studies: in vitro Model Validation

Case Study 1: Sodium Taurocholate Uptake into Bile

S+ SimulationsPlus

SODIUM TAUROCHOLATE

Guo, ISSX 2014

S⁺ SimulationsPlus

MEMBRANEPLUS MODEL ASSUMPTIONS

- Assumptions
 - No protein binding for Na Taurocholate
 - No stirring
 - Complete monolayer of cells (100% viability)
 - ADMET Predictor values for properties
 and transport model parameters calculated using calibration
- Literature values for K_m were used as a starting point for building the model.
- K_m values are similar across species
 - Swift-Mol-Pharm-2010-7(2)-491-500

Transporter	K _m (μM)	Cells	Literature Source
OST alpha/beta	25.8	Human	Swift-Mol-Pharm-2010-7(2)-491–500
Overall Uptake	19	Rat	Schwarz-Eur-J-Biochem-1975-55-617-623
NTCP	6	Human	J-Exp-Biol-2001-204-1673-1686
BSEP	5	Rat	J-Exp-Biol-2001-204-1673-1686

S⁺ SimulationsPlus

Cell Assay Inputs					
Feed Solution Conc.	1,2.5	μM			
BSA	4	%			
Well size	24	well			
Volume	0.3	mL			
Cell Vol.	6.46	pL			
Cell Layer Thickness	18.6	micron			
Cell Den	0.4	Mcell/well			

SIMULATION RESULT

 Experimental K_m values utilized from literature and V_{max} values fit to data (all remaining properties were predicted by ADMET Predictor).

Case Study 2: Quantification of Influx Transport vs. Metabolism Statin Compounds

Suspended Hepatocytes

QUANTIFY THE RELATIVE IMPORTANCE OF INFLUX TRANSPORT (OATP1B1) VS. METABOLISM

FIG. 3. Typical plots for atorvastatin (A and D), cerivastatin (B and E), and indomethacin (C and F) cell and medium data and associated WinNonlin-generated fits to the model (Fig. 1). A to C, concentration of drug in cells and medium; D to F, amount of drug in cells or medium: cells (\triangle , cells; \blacktriangle , medium).

- Media and whole cell concentration data for atorvastatin, cerivastatin, and indomethacin.
- Used a simple compartmental model to extract clearance values

MEMBRANEPLUS MODEL RESULTS I

S⁺SimulationsPlus

MEMBRANEPLUS MODEL RESULTS II

TABLE 2

Derived and associated predicted in vitro parameters for atorvastatin, cerivastatin, and indomethacin

Data are mean ± S.D., and n = 3 unless otherwise stated.

	Atorvastatin	Cerivastatin	Indomethacin	
$CL_{int,uptake}$ (μ l/min/10 ⁶ cells) $CL_{int,uptake}$ (μ l/min/10 ⁶ cells)	375 ± 45 17 ± 45	413 ± 47	599 ± 101 237 ± 63	
$CL_{int,met}$ (µl/min/10 ⁶ cells) Ψ	4.3 ± 0.65 18	2.3 ± 0.6 7.8	1.0 ± 0.49 3.5	
k_{mem} (ml) fu _{cell}	0.092 ± 0.007 0.011 ± 0.0002	0.15 ± 0.04 0.0081 ± 0.001	$\begin{array}{c} 0.15 \pm 0.13 \\ 0.054 \pm 0.041 \\ 4.0 \pm 2.2 \end{array}$	Paine, DMD (2008) 36:1365–1374
$CL_{inc} (\mu l/min/10^{\circ} \text{ cells})$ $CL_{med} (\mu l/min/10^{\circ} \text{ cells})$ $Vss_{wet} (m l/10^{\circ} \text{ cells})*$	68 ± 31 8 ± 2	17 ± 14 5 ± 1.6	4.0 ± 2.3 7 ± 4 2 ± 0.4	
f _{med,ss}	0.14 ± 0.04	0.2 ± 0.06	0.54 ± 0.1	

* At a cell concentration of 1×10^6 cells/ml.

S + SimulationsPlus

MODEL COMPARISON

• The mechanistic model in MembranePlus achieved similar result as the simpler compartmental model with fewer fitted parameters

	Compartmenal model*	Membrane Plus
Intracellular volume	Fitted	System parameter
Cell membrane volume	Fitted	System parameter
Membrane/water partitioning (kmem)	Fitted	Predicted from compound properties
Active uptake	Fitted	Fitted
Passive diffusion	Fitted	Predicted from compound properties (atorvastatin only)
Metabolism	Fitted	Fitted

Case Studies: in vitro to in vivo Extrapolation

Case Study 3: Metabolic IVIVE

PROPAFENONE HUMAN HEPATOCYTE DATA

FIG. 2. A, disappearance of propafenone in cryopreserved human hepatocytes at various initial concentrations. Propafenone at concentrations of 0.05, 0.2, 1, and 5 μ M was incubated with 1 × 10⁶ cells/ml human hepatocytes individually prepared from three donors. Each point represents the mean ± S.D. of the remaining percentage of substrate to the initial concentration in hepatocytes from three donors. B, relationship between initial substrate concentration and depletion rate constant of propafenone in cryopreserved human hepatocytes. Each point represents the mean ± S.D. of depletion rate constants of three donors. The line represents the curve predicted from eq. 1.

Komura, Drug metabolism and disposition 33.6 (2005): 726-732.

- Reports indicate it is a CYP2D6 substrate and has saturable dose dependent kinetics.
- In vitro data from literature was used to fit intracellular unbound Km and Vmax

FIT Km AND Vmax TO in vitro DATA

• K_m = 0.0146 mM

 V_{max} = 9.27E-02 mmol/s/L cytosol (Converts to: 2.17E-02 nmol/min/10^6 cells)

K_m fitted in mechanistic model was lower than the one reported in paper which is indicative of K_m based on unbound intracellular concentration

S+ SimulationsPlus

PREDICT in vivo PK

PBPK model:

- Kps predicted using default (Lukacova) method in GastroPlus
- CYP2D6 clearance extrapolated from fitted *in vitro* values (shown on previous slide)

Data: Hollmann, Cardiac Arrhythmias, Springer 125-132

S+ SimulationsPlus

Case Study 4: Transporter IVIVE

DIGOXIN: FIT INTRACELLULAR Km in vitro

 Published data on nonlinear Papp vs. donor concentration for Digoxin were used to fit Pgp Km (intracellular unbound) and Vmax

Data from:

Troutman and Thakker, Pharm. Res., Vol. 20, No. 8: 1200-1209.

1	Transporter Table						x
	Transporter Table						
L	Generic	Transporter	Туре	Location	Vmax (umol/s/L Cytosol)	Km (uM)	
E	digoxin_0.18uM_AtoB	P-gp	Efflux	Apical	6.04E+02	9.53E+01	_
F	*						
L							

DIGOXIN: MODEL VERIFICATION

- Km obtained from fitting to a published dataset was used to predict concentration-time profiles from another dataset
- Vmax was adjusted to account for different expression levels of Pgp in different systems

S+ SimulationsPlus

DIGOXIN: PREDICT in vivo ABSORPTION

A: Observed (symbols) vs. predicted plasma conc. (blue) and urinary excretion (red) of digoxin (Ochs, 1978).

B: Observed (symbols) vs. predicted plasma conc. (blue) of digoxin for a PO formulation with 6.5 mm radius particle size (Jounela, 1975).

C: Observed (symbols) vs. predicted plasma conc. (blue) of digoxin for a PO formulation with 51 mm radius particle size (Jounela, 1975).

All simulations are using the fitted intracellular unbound P-gp Km value of 95.3 mM

S + Simulations Plus science + software = success

© Copyright 2018 Simulations Plus, Inc. All rights reserved.

Case Studies 5: Lysosomal Trapping and Absorption

S+ SimulationsPlus

LYSOSOMAL TRAPPING OF LIPOPHILIC CATIONS

Drug	Log P	Basic pKa	T _{max} (h)
Protriptyline	4.69	10.0	27
	4.7	10.1	16
Mefloquine P N N HN P P P P P	3.81	8.52	15
Nortriptyline	4.46	9.65	7.8
Fluoxetine	4.39	9.82	7
Chloroquine	5.11	9.86	6

Kazmi F., Drug Metab. Disp. 41(3):897 (2013)

SI SimulationsPlus

LYSOSOMAL TRAPPING OF LIPOPHILIC CATIONS

Hepatic perfusion experiment with and without H+ ionophore Monensin

Empty symbols represent controls and solid symbols represent monensin treatment. Dashed and solid lines stand for fitted data in control and treatments, respectively.

	log P	$\mathbf{p}K_{-}$	Drug	Monensin Effect
	app	Pa	Antipyrine	No Effect
Atenolol	0.14	9.60	Atenolol	Minor Effect
Antipyrine Propranolol	$\begin{array}{c} 0.33\\ 3.10\end{array}$	$1.45 \\ 9.45$	Propranolol	Strong Effect

Siebert GA, JPET 308(1):228 (2004))

S + SimulationsPlus

© Copyright 2018 Simulations Plus, Inc. All rights reserved

LYSOSOMAL TRAPPING OF LIPOPHILIC CATIONS

Caco-2 Apical-to-Basolateral permeability experiment

Solid squares – Apical compartment Solid triangles – Basolateral compartment Empty squares – Cell monolayer Lines represent fitted model results

Physicochemical properties of the model compounds used

Compound	$\mathrm{p}K_\mathrm{a}{}^a$	Log D at pH 7.4^a
Propranolol Ibuprofen Testosterone	$9.1_{ m basic} \ 4.4_{ m acidic} \ m N.A.^b$	$1.4 \\ 0.8 \\ 3.5$

Heikkinen AT, JPET 328: 882 (2009)

S + SimulationsPlus

© Copyright 2018 Simulations Plus, Inc. All rights reserved.

CONSEQUENCES in vivo: DESIPRAMINE

Desipramine physicochemical properties

© Copyright 2018 Simulations Plus, Inc. All rights reserved

CONSEQUENCES in vivo: DESIPRAMINE

S+ SimulationsPlus

CONSEQUENCES in vivo: DESIPRAMINE

S+ SimulationsPlus

METHYLPHENIDATE MEMBRANEPLUS™ SIMULATION

S⁺ SimulationsPlus

METHYLPHENIDATE MEMBRANEPLUS™ SIMULATION

S+ SimulationsPlus

METHYLPHENIDATE GASTROPLUS SIMULATION

Fu,ent = 100%

Fu,ent = 4.37%

S+ SimulationsPlus

SUMMARY

- Mechanistic cellular simulations:
 - Help to separate drug and system parameter inputs (similar to *in vivo* PBPK models) for easier translation between systems
 - Are important to assess critical mechanisms affecting drug absorption, distribution and elimination pathways:
 - Contributions of passive and active drug transport
 - Interplay between drug metabolism and cellular uptake
 - Disposition in bile
 - Distribution within cellular structures (lipid bilayers, lysosomes)
 - Facilitate extraction of variety of relevant parameters for more accurate IVIVE

MembranePlus^{**}

S + Simulations Plus science + software = success

Additional Slides

S+ SimulationsPlus

COMPOUND X - CLASS II/IV

AAPS PharmSciTech (© 2014) DOI: 10.1208/s12249-014-0075-1

Research Article

Application of Physiologically Based Absorption Modeling to Formulation Development of a Low Solubility, Low Permeability Weak Base: Mechanistic Investigation of Food Effect

Hefei Zhang,^{1,2} Binfeng Xia,¹ Jennifer Sheng,¹ Tycho Heimbach,¹ Tsu-Han Lin,¹ Handan He,¹ Yanfeng Wang,¹ Steven Novick,¹ and Ann Comfort¹

Received 2 October 2013; accepted 23 December 2013

Table II. Physicochemical Parameters, Default Physiological Values, and Pharmacokinetic Parameter Used in the Simulation at Various Doses

Parameters	Value(s)
Compound parameters	
$M_{\rm w}$: g/mol	>475
cLogP:	>4
pK_a (base):	3.2, 6.2
Dosage:	IR capsule
Solubility (mg/mL):	1.8 (pH 1), 0.3 (pH 2), 0.001 (pH 6.8)
biorelevant solubility (ing/inL):	0.025 (lasted); 0.190 (led)
Mean precipitation time (s) :	450 s (fasted); 2,000 s (fed
Particle radius of API (um):	19
Physiological parameters	19
Stomach pH	1.2 (Fasted): 1.2-4.9 (Fed)
Duodenum/ieiunum pH	60-64 (Easted): 54-60 (Ee
Ileum pH	6.6–7.4 (Fasted); 6.6–7.4 (Fe
and the second se	
Stomach transit time (h)	2.0 (Fasted); 5.4 (Fed)
Sman intestine transit time (ii)	3.3
Cecum transit time (h)	4.2
Ascending colon transit time (h)	12.6
Pharmacokinetics	
First pass extraction (%):	9.0
Blood/plasma ratio:	0.68
Plasma unbound (%):	1.6
Clearance (L/h/kg)	0.070
V_c (L/kg)	0.4
k_{12} (1/h)	0.64
k_{21} (1/h)	0.17
V_t (L/kg)	1.5

Zhang et al. AAPS PharmSciTech 2014 January 17

Are the different (fitted) precipitation and gastric emptying times under fasted & fed conditions masking something else in the model?

- Lipophilic (log P > 4)
- Moderate base (pKa 3.2 and 6.2)
- Low (0.001 mg/mL), pH dependent solubility
- Moderate gut permeability (1.48 x 10⁻⁴ cm/s)
- Estimated bioavailability ~30%

Fig. 1. Mean clinically observed (*solid circles* with standard error) and model-simulated plasma concentration *versus* time profiles of cpd X after a single oral dose of a 200 mg or b 400 mg cpd X under fasted and fed condition

S+ SimulationsPlus

COMPOUND 'X' - FASTED STATE MODEL DEVELOPMENT

S+ SimulationsPlus

COMPOUND 'X': GASTROPLUS™ SIMULATIONS WITH MEMBRANEPLUS™ fu, ENTEROCYTE = 3.47%

- The lag between absorption into enterocyte and basolateral clearance into portal vein captures the extended Tmax
- No changes to default GI physiology required

S+ SimulationsPlus

COMPOUND 'X' - FOOD EFFECT PREDICTIONS ACROSS DOSES

- simulated MembranePlus™ Fu, Enterocyte input
- Optimized precipitation from **low dose/fasted state PK data** >> predicted remaining 3 study arms
- Default ACAT™ fasted/fed physiology parameters

S+ SimulationsPlus

MEMBRANEPLUS

Data Analysis

- Instant permeability output from molecular structure or experimental data.
- Unbound Intracellular concentrations (Membrane, cytosol, lysosome, etc.)
- In vitro K_m and V_{max} for enzymes and transporters
- Parameter sensitivity analysis (on logP, shaking rate, pH etc.)
- Transwell, sandwich hepatocyte, and suspended hepatocyte models

Assay Prediction

- Permeability
- Concentrations in cellular structures (Membrane, cytosol, lysosome)

