Implementation of a Physiologically Based Pharmacokinetic Modeling Approach to **Predict Disease-Related Changes in Drug Pharmacokinetics in Patients with Nonalcoholic Fatty Liver Disease** Jeffry Adiwidjaja^{1,2*}, Jessica Spires² and Kim LR Brouwer¹

I

¹UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA St Martions Plus ²Simulations Plus, Inc., Lancaster, CA, USA Cognigen DILIsym Services Lixoft

Correspondence to jadi8091@email.unc.edu; jeffry.adiwidjaja@simulations-plus.com

INTRODUCTION

METHODOLOGY

- Disease-related changes pertinent to drug disposition in patients with nonalcoholic fatty liver disease (NAFLD) have been identified [1]
- However, clinical pharmacokinetic (PK) data in this patient population are limited, and defining optimal dosage regimens for drugs commonly used in patients with NAFLD is a challenge

• A physiologically based pharmacokinetic (PBPK) modeling approach may provide insights into NAFLD-mediated changes in PK and inform dose optimization

OBJECTIVE

This study aimed to develop a **virtual NAFLD population** to support the implementation of a PBPK modeling approach to predict PK changes in NAFLD patients

RESULTS

Table 1 Simulated and clinically-reported values [2–6] for pharmacokinetic parameters of the selected compounds used to verify the virtual NAFLD population

Compound	Parameter	Ratio (diseased population divided by healthy control)		Prediction-fold
		Model prediction	Clinically- reported value	difference
Pioglitazone	Dose-normalized trough concentration (C _{ss,min})	1.42	1.46	0.97
OH-pioglitazone		0.66	0.68	0.97
¹¹ C-metformin	Peak hepatic SUV (simple steatosis)	0.93	1.11	0.84
	Peak hepatic SUV (NASH)	0.76	0.93	0.82
Rosuvastatin	Systemic exposure (AUC _{0-inf})	0.85	0.81	1.05
	Peak concentration (C _{max})	0.80	0.83	0.96
SUV: standardized u	intake values			

Fig. 2 Comparison of PBPK model predictions and clinically-observed concentrations of pioglitazone and the active metabolite, hydroxy-pioglitazone in healthy people and patients with NASH

CONCLUSIONS

- A virtual NAFLD population model within the PBPK framework was successfully developed with a good predictive capability of estimating disease-related changes in drug PK
- The verified model may help inform dose adjustment of drugs commonly used to treat comorbidities in this patient population
- This also supports the use of model-informed predictions of the PK of new or repurposed drugs for potential treatment of NAFLD

1.5

1.5

Intestinal BCRP

Hepatic BCRP

Hepatic CYP2C9

🐺 Hepatic OATP1B1

Hepatic OATP1B3

Hepatic NTCP

A Renal OAT3

Renal MRP2

Fig. 3 Verifications of the virtual NAFLD population using ¹¹C-metformin as an exemplar compound

ACKNOWLEDGMENTS

- During this study, JA received financial support from Simulations Plus, Inc. for his postdoctoral training
- The helpful feedback from Dr. Viera Lukacova (Simulations Plus, Inc.) and technical assistance from Dr. Ke Szeto (formerly at Simulations Plus, Inc.) are gratefully acknowledged

REFERENCES

- 1. Murphy WA, et al. *Clin Pharmacol Ther* 2022; doi: 10.1002/cpt.2614
- 2. Manitpisitkul P, et al. *Epilepsy Res* 2014; **108**(9): 1519–32
- 3. Kawaguchi-Suzuki M, et al. *Aliment Pharmacol Ther* 2017; **46**(1): 56–61
- 4. Sundelin EIO, et al. *Clin Pharmacol Ther* 2017; **102**(5): 841–8
- 5. Sundelin EIO, et al. Br J Clin Pharmacol 2019; 85(8): 1761–70
- 6. Tirona RG, et al. Drug Metab Dispos 2018; **46**(5): 485–92