Hepatotoxicity of Compound V Evaluated with Quantitative Systems Toxicology

4th November 2020 Vinal Lakhani

#PharmSci360

Session Description and Objectives

Compound V is a small molecule with potential therapeutic benefits in patients with obesity. An early clinical safety trial produced two patients with liver enzyme elevations. This presentation discusses the combination of *in vitro* assays and *in silico* modeling to investigate the hepatotoxicity of Compound V. DILlsym, a quantitative systems toxicology (QST) model of drug-induced liver injury, was used to evaluate what mechanisms may be involved and if the compound concentration in the liver plays a role. Simulation results predict Compound V can injure hepatocytes and reveal the primary mechanism of injury: Reactive Oxidative Stress. This prediction of hepatotoxicity is highly sensitive to the value of the liver:blood partition coefficient (Kp). These results demonstrate the ability for QST modeling, specifically DILIsym, to propose plausible rationales for difficult-to-explain clinical liver toxicity data, and to suggest which further experiments would be most useful for understanding the underlying mechanisms of certain DILI cases.

I also have a poster with more details on this project! **Poster ID: 891035**

- Upon completion, participants will be able to recognize how *in silico* QST modeling and simulations identify data gaps, thereby guiding future *in vitro* experiments and *in vivo* studies.
- Upon completion, participants will be able to design and execute a set of QST simulations to determine which mechanism(s) of injury is driven by a compound of interest.
- Upon completion, participants will be able to identify and develop *in vitro* assays that are most useful for parameterizing a QST model like DILIsym.

#PharmSci360

Biography and Contact Information

- Dr. Lakhani's primary role is to improve the SimPops capabilities, including size and tools, across all the software platforms developed by DSSI.
- He is often a technical lead on DILIsym consulting projects, such as the project discussed here.
- He contributes to the model development of DILIsym, RENAsym, and RADAsym.
- <u>vlakhani@dilisym.com</u>
- <u>https://www.dilisym.com</u>

9 aaps

Introduction, Background, and Methods

The Molecule of Interest

- Compound V is a small, lipophillic molecule with potential therapeutic benefits for patients with obesity.
- An early clinical safety trial produced 2 out of 16 patients with liver enzyme elevations.

Pharm Scisso

DILIsym QST Model

In vitro Assays Signaled Compound V has Potential for Hepatotoxicity

- DILIsym represents 3 distinct mechanisms of toxicity
 - Bile Acid Transporter Inhibition (Solvo Biotechnology)
 - BSEP, NTCP, MRP3, MRP4
 - Mitochondrial Dysfunction (Cyprotex)
 - SeaHorse XF Analyzer with HepG2 cells
 - Inhibition of proteins in the electron transport chain
 - Mitochondrial Membrane Uncoupling
 - Production of ROS/RNS (Cyprotex)
 - Cytotoxicity High Content Screen in HepG2 cells

IC₅₀ values estimated for all four transporters

K_M and V_{max} for inhibition of electron transport chain

 $K_{\rm M},\,V_{\rm max}$ and $n_{\rm Hill}$ for ROS production

Compound	BA Transport signals	Mitochondrial dysfunction signals	Oxidative stress signals
Compound V	Yes	Yes	Yes

#PharmSci36

GastroPlus Model Trained on Single Dose Clinical Data

1x Single Dose

4x Single Dose

GastroPlus Model Validated on Multiple Dose Clinical Data

Large Range of Possible Liver K_P Value Makes Predictivity Complicated

- No measurements of preclinical species' Liver K_P was available
- An *in silico* prediction by GastroPlus gave a value of 0.33
- An *in vitro* estimate with HepG2 cells gave a value of 3.3

#PharmSci360

DILIsym Prediction of Toxicity is Heavily Dependent on the Liver K_P Value

DILIsym Mechanistic Analysis Shows ROS Production as the Necessary and Sufficient Mechanism for Compound V to Cause Hepatotoxicity

1x QD Liv K_p = 2.4

Mechanisms OFF	Mechanisms ON	Simulated ALT >3x ULN Frequency
None	All	15/15
ROS	ETCi, BAi	0/15
ETCi	BAi, ROS	15/15
BAi	ETCi, ROS	15/15
ETCi, BAi	ROS	15/15
BAi, ROS	ETCi	0/15
ETCi, ROS	BAi	0/15

 DILIsym allows each mechanism of toxicity to be individually turned ON or OFF

ETCi = electron transport chain inhibition BAi = bile acid transporter inhibition ROS = reactive oxygen species generation

Insights from DILIsym Modeling for Compound V

- Data Gap
 - The Liver $K_{\rm P}$ Value is a critical gap in knowledge for assessing hepatotoxicity of Compound V
 - A value of 2.1 can be estimated based on comparing DILIsym's predicted frequency of ALT elevations with clinical observations
- Culprit Mechanism of Injury
 - Based on the mechanistic sensitivity analysis, DILIsym shows the production of ROS is necessary and sufficient for Compound V hepatotoxicity
- Additional Insights discussed on poster

References

- We have extensively published on the DILIsym model. Please see the following review paperas a great starting point
 - Watkins Curr Opin Toxicol. 2020
 - Watkins PB. DILIsym: Quantitative systems toxicology impacting drug development. Curr Opin Toxicol. 2020;23–24: 67–73. doi:10.1016/j.cotox.2020.06.003

#PharmSci360

Acknowledgments

- Grant Generaux
 - Project Tech

Grant Generaux Senior Scientist Philadelphia, PA

- Jeff Woodhead
 - Project Lead

Jeff Woodhead Senior Scientist RTP, NC

- Scott Siler
 - Project Oversight

Scott Q Siler Chief Scientific Officer Bay Area, CA

- Brett Howell
 - Project Oversight

Brett Howell President RTP, NC

#PharmSci360

Questions

- DSS is also developing a QST model for Acute Kidney Injury (RENAsym)
- DSS has developed a QSP model capable of assessing the efficacy of compounds to treat NAFLD or NASH (NAFLDsym)
- Some other QSP models under development
 - **IPFsym** Idiopathic Pulmonary Fibrosis

🤊 aaps

- RADAsym Acute Radiation Injury
- Contact information:
 - vlakhani@dilisym.com
 - https://www.dilisym.com

