Building Encorafenib Physiologically Based Pharmacokinetic Model and its Qualification to Predict Drug-Drug Interaction with Posaconazole

February 16th, 2023 MIDD+

Building a PBPK model to predict interaction with

posaconazole

Prediction to support recommendations in labels

4.5 Interaction with other medicinal products and other forms of interaction

Effects of other medicinal products on encorafenib

In vitro and in vivo data

Specific Challenge: Time-dependent PK and prediction of interaction after multiple doses

Background

https://learn.colontown.org/

Encorafenib

- Potent and highly selective ATP-competitive small molecule RAF kinase inhibitor
- Suppresses the RAF/MEK/ERK pathway in tumour cells expressing several mutated forms of BRAF kinase (V600E, D and K)
- Indicated in:
 - combination with binimetinib, for the treatment of patients with unresectable or metastatic melanoma with a BRAF V600E or V600K mutation (2018)
 - combination with cetuximab, for the treatment of adult patients with metastatic colorectal cancer (CRC) with a BRAF V600E mutation (2020)
- Co-developed and Co-marketed, Partnership with Pfizer

Encorafenib Elimination and *in vitro* Drug Drug Interaction

Source: FDA Drug Approval Package Multidiscipline Review, European Public Assessment Report

Drug Drug Interaction Clinical Study encorafenib + posaconazole (strong CYP3A inhibitor)

Design

> Healthy Subjects:

- Acceptable safety profile
- Single dose
- Sub-therapeutic dose (50 mg rather than 450 mg) anticipating a drug interaction with posaconazole

> Posaconazole: well characterized strong CYP3A inhibitor

Drug Drug Interaction Clinical Study encorafenib + posaconazole : Results

Contraction of the second	P

	Geometric		
Exposure parameter	Encorafenib alone (50 mg)	Encorafenib (50 mg) with posaconazole (400 mg BID for 7 days)	Geometric Mean Ratio* (90% CI)
AUC _{0-72h} (ng·hr/mL)	2035 (40%)	5785 (38%)	2.84
	n=16	n=16	(2.55, 3.17)
AUC _{0-inf} (ng·hr/mL)	2051 (40%)	5812 (38%)	2.83
	n=16	n=16	(2.54, 3.16)
C _{max} (ng/mL)	553.5 (33%)	932.1 (31%)	1.68
	n=16	n=16	(1.54, 1.85)

* Posaconazole 400 mg BID for 7 days and a single encorafenib 50 mg dose vs. a single encorafenib 50 mg dose alone.

Source: FDA Drug Approval Package Multidiscipline Review, European Public Assessment Report

PBPK Modeling: Strategy

Performed using GastroPlus version 9.0

In vitro data Phase I studies Encorafenib **Prediction of** DDI Prediction & Model posaconazole DD Qualification **PBPK model** Qualification REFINEMENT Information from PopPK model developed for Posaconazole PBPK pivotal phase 3 trial and food effect study: model Adjusted CYP3A Km and Vmax and net

induction effect without time dependent

inhibition

Step 1 : Initial model development using *in vitro* and Phase I data

16 February 2023 I 8

Initial Model Development using *in vitro* and Phase I data

- 1. Use of *in vitro* data
 - ➢ rCYP data (CYP3A, 2C19), CYP2D6 ignored
 - > In vitro quantification of CYP3A4 induction and inhibition
- 2. Use of Phase I data

Rich profiles at 2 doses

Accumulation ratio ~ 0.5	Study	Encorafenib Dose	Regimen	N/ Study Population
1. Metabolism-mediated	Dose- escalation	50 to 700 mg	Once daily	54 patients
elimination	-> Mass Balanc	e 100 mg	Single dose	4 healthy subjects
z. Estimation of absorption	DDI with PPI	100, 300 mg	Single dose	15 healthy subjects

Initial Model Qualification

▲ Patient – multiple doses ▲ Patient – single dose ● Healthy subjects – single dose

The solid line represents the identity line and the dashed lines show margins for 0.8-1.25 limits and 2-fold errors. AUC corresponds to AUCinf for single dose data and AUCtau for multiple dose data.

Most of the errors expressed as ratio predicted /observed are in 2-fold range → Can be considered qualified/validated

But...

- Auto-induction is predicted but can be improved: underestimation of auto-induction
- > Over-estimation of food effect
 - Predicted: Significant decrease in AUC fasted vs fed
 - Observed: no effect with high fat meal ~ 3-4 % decrease in AUC
 - Not explained by the absorption model (good prediction of the absorbed fraction in fasted and fed conditions)
 - But parameters regarding CYP3A4 in the gut should be improved

Step 2: Model Refinement

Model Refinement

- Auto-induction is predicted but can be improved: under-estimation of auto-induction
- > Over-estimation of food effect
 - Predicted: Significant decrease in AUC fasted vs fed
 - Observed: no with high fat meal ~ 3-4 % decrease in AUC
 - Not explained by the absorption model (good prediction of the absorbed fraction in fasted and fed conditions)
 - But parameters regarding CYP3A4 in the gut should be improved

Information :

- PopPK model developed and validated on Phases I, II and III data
- Clinical food effect study

ADME Adjustments		Adjustments
	Time- dependent inhibition	Removed. Net induction = auto- inhibition + auto- induction
	Auto-induction	No or negligible dose effect
	CYP3A4 Metabolism	Lower saturation of CL -> Km increased (estimated) Aligned with dose escalation study
	Volume of distribution	Adjust Kp with LogP
	CL in healthy subjects	CYP3A4 et CYP2C19 Vmax adjusted (estimated)

Model Refinement using *in vivo* Information

Food effect	
Check	

Study	Encorafenib Dose	Regimen	N/ Study Population
Food effect	100 mg	Single dose	31 healthy subjects
Pop PK model Pivotal Phase 3	300, 450 mg	Once daily	383 patients and 15 healthy subjects

Clearance adjustment regarding net autoinduction and Vmax

Final Model Qualification

Patient – multiple doses A Patient – single dose • Healthy subjects –single dose

Prediction errors expressed as ratio predicted/observed were improved

The model can be used for DDI prediction

Step 3: Drug Drug Interaction Prediction

Posaconazole model: The moder was validated by comparing simulated and observed oral PK data for posaconazole dose levels ranging from 50 to 1200 mg (5 studies in healthy subjects). The posaconazole PBPK-DDI model successfully predicted the increase in midazolam exposures.

Prediction of Drug Drug Interaction with Posaconazole

Conclusion and perspectives

MECHANISTIC PKPD MODELING

G. Tucker 2013 Middle-Out'-Joined-Up Thinking For Pharmacokinetic-Pharmacodynamic Model-Based Learning And Confirming In Drug Development

Combined bottom-up and middle-out approaches

- PBPK encorafenib model validated and reliable for DDI prediction
- Enable DDI predictions at therapeutic dose and regimen (QD)
- > Simulations with other strong inhibitors
- Model was used to support recommendations in labels
- Model was used to predict DDI with encorafenib as a victim

This work was performed in collaboration with Micaela Reddy (Pfizer) and Viera Lukacova (Simulations Plus)

Thank you for your attention © Any Questions ?

