

SI Simulations Plus

Cognigen DILIsym Services Lixoft

Al-driven Lead Discovery

Michael S. Lawless, David Miller, and Marvin Waldman

> Spring ACS 2022 San Diego CA

Al-driven Lead Discovery

- Computer based *de novo* drug design background
- The AIDD Module in ADMET Predictor[®]
- Using chemically intelligent SMIRKS transformations to generate molecules
- Synthetic feasibility assessment
- Incorporating pharmacokinetic and ADMET liability predictions
- Penalizing out of scope predictions
- Using capping values when objective function value is "good enough"
- Using external programs to compute objective functions
- Selecting Pareto optimal compounds
- AIDD module demonstration

Computer Aided De Novo Drug Design

Early 1990's

Structure Based Design (SBD)

Ludi

Sprout

MCSS/Hook

"It ain't just activity anymore"

• Lipinski Rule of 5

Late

1990's

- ADMET
- Drug design in multiobjective

Multi-objective LBD & SBD

Early to

late 2000's

- Typically, multi-objective combined into a single function
- EA-Inventor
- Muse
- In-house pharma programs

• Pareto-based optimization

Last

decade

• Deep learning generative algorithms

S SimulationsPlus Cognigen | DILlsym Services | Lixoft

Generating and Selecting/Scoring Virtual Molecules

Generating virtual molecules

- Elementary "Transforms"
 - Modify molecules with small changes or fragment additions/deletions
 - Change/Add single atom or bond
 - Add common fragments
 - Carboxylic acid, sulfonamide, phenyl, etc.
 - Synthetic Feasibility?
 - Filter molecules based on structural alerts, e.g. hemiacetal, peroxide, etc.
 - Combinatorial chemistry libraries
 - Known synthetic reactions and building blocks
 - Chemical Diversity/Novelty?
 - SMIRKS-based
 - Deep Learning
 - Generative algorithms based on SMILES or graph representations

Molecule selecting/scoring approaches

- Multi-objective Criteria
 - Weighted Sum or "Combining" Function
 - Pareto optimal
 - Criteria
 - Activity/Docking scoring
 - ADMET liabilities
 - Similarity to known active/lead
 - Synthetic accessibility
 - Drug-likeness
 - Chemical filters

AIDD Module in ADMET Predictor®

Goal – design compounds that have:

- High potency and selectivity at the primary target
- High synthetic feasibility
- Good ADMET and pharmacokinetic (PK) properties

Can be used for hit finding, lead optimization, and scaffold hopping e.g., patent busting

AIDD Workflow

NASDAQ: SLP

Cognigen | DILIsym Services | Lixoft

Generate Molecules Using Transform Rules

Generated analogs

Stewart K.D. et al. Bioorg. Med. Chem. 2006, 14, 7011-7022.

Chemically Intelligent Transforms

- Example: Convert Non-fluorine to fluorine
 - Simple version: [!#9:1;D1_S]>>[#9:1]
 - Problem (Need to avoid)

- Improved SMIRKS: [!#9;D1_S\$(*~[#6])!\$(*C=[O,N,S]):1]>>[#9:1]
- Currently ~150 transforms

Properties

	Compound optimization	×
~50 Built-in models %Fa, %Fb Synthetic Difficulty+ User Models	Available properties Properties to optimize ✓ < Synthetic_Difficulty+> △ Synthetic_Difficulty+> △ Synthetic_Difficulty+> △ Synthetic_Difficulty+> △ Synthetic_Difficulty+> △ Abon_Risk △ Abon_Risk △ BBB_Risk BacE1_Model B BBC Crop Addel BACE1_Model B Crop Addel BACE1_Model B Crop Addel BACE1_Model B BBC Risk BACE1_Model C (YP ALM_CLint Modify Selected C (YP RLM_CLint Parameters for selected properties C (YP RLM_CLint Out-of-scope factor for D aphnia_LCS0 DiffCoef	Direction Capping Value Minimize Maximize Minimize Minimize Maximize Minimize Maximize Minimize Selected Remove All risk models rstandard models roperties Mouse etic properties [mg] Minimize
	Parameter file for external application C:\Users\mlawless\AppData\Local\Simulati Browse	Cancel Next >

Synthetic Accessibility/Difficulty

	SA Ertl ¹	SynthDiff ²
Training	~1 million	~47 million
Outer Layer	Any	aromatic vs. aliphatic
Complexity	Same	Same
Range	1-10	0-10

¹Ertl and Shuffenhauer, *J. Cheminfo*, **2009**, 1, 8. ²Implemented in ADMET Predictor

ADMET Risk[™]

ldentifier	Weight	Rule logic	
Size	1.0	MWt > 450{500} OR N_Atoms > 30{35} OR MolVol > 470{520} OR N_Bonds > 35{40}	
RotB	1.0	N_FrRotB > 8{10}	
HBD	1.0	HBDH > 3{5} AND HBDch > 1.5{2.0}	
HBA	1.0	HBA > 7{10} AND HBAch < -6.0{-5.0}	Abcorption
ch	1.0	NPA_ABSQ > 19{21} OR T_PSA > 120{140}	Absorption
Kow	1.0	S+logP > 4.5{5.0} OR S+logD > 3.5{4.0} OR MlogP > 3.5{4.0}	
Peff	1.0	S+Peff < 0.40{0.60} OR S+MDCK < 10{25}	
Sw	1.0	S+Sw < 0.005{0.010}	
fu	1.0	hum_fup% < 4{6}	
Vd	1.0	Vd > 4{5}	→ Distribution
hERG	1.0	hERG_Filter = Yes AND hERG_pIC50 > 5.5{6.0}	
rat	1.0	Rat_Acute < 200{300}	
Xr	1.0	Rat_TD50 < 2.5{5.0}	
Xm	1.0	Mouse_TD50 < 25{40}	ΤΟΛΙΟΤΟΥ
HEPX	1.0		
	1.0	Ser_AST = Elevated AND Ser_ALT = Elevated AND Ser_LDH = Elevated	
MUT	1.0	Ser_AST = Elevated AND Ser_ALT = Elevated AND Ser_LDH = Elevated MUT_Risk > 1	
MUT 1A2	1.0	Ser_AST = Elevated AND Ser_ALT = Elevated AND Ser_LDH = Elevated MUT_Risk > 1 (CYP1A2_CLint > 20{40} AND CYP1A2_Substr = Yes)	
MUT 1A2 2C9	1.0 1.0 1.0	Ser_AST = Elevated AND Ser_ALT = Elevated AND Ser_LDH = Elevated MUT_Risk > 1 (CYP1A2_CLint > 20{40} AND CYP1A2_Substr = Yes) (CYP2C9_CLint > 10{20} AND CYP2C9_Substr = Yes)	
MUT 1A2 2C9 2C19	1.0 1.0 1.0 1.0	Ser_AST = Elevated AND Ser_ALT = Elevated AND Ser_LDH = Elevated MUT_Risk > 1 (CYP1A2_CLint > 20{40} AND CYP1A2_Substr = Yes) (CYP2C9_CLint > 10{20} AND CYP2C9_Substr = Yes) (CYP2C19_CLint > 10{20} AND CYP2C19_Substr = Yes)	Motabolicm
MUT 1A2 2C9 2C19 2D6	1.0 1.0 1.0 1.0 1.0 1.0	Ser_AST = Elevated AND Ser_ALT = Elevated AND Ser_LDH = Elevated MUT_Risk > 1 (CYP1A2_CLint > 20{40} AND CYP1A2_Substr = Yes) (CYP2C9_CLint > 10{20} AND CYP2C9_Substr = Yes) (CYP2C19_CLint > 10{20} AND CYP2C19_Substr = Yes) (CYP2D6_CLint > 10{20} AND CYP2D6_Substr = Yes)	Hetabolism
MUT 1A2 2C9 2C19 2D6 3A4	1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ser_AST = Elevated AND Ser_ALT = Elevated AND Ser_LDH = Elevated MUT_Risk > 1 (CYP1A2_CLint > 20{40} AND CYP1A2_Substr = Yes) (CYP2C9_CLint > 10{20} AND CYP2C9_Substr = Yes) (CYP2C19_CLint > 10{20} AND CYP2C19_Substr = Yes) (CYP2D6_CLint > 10{20} AND CYP2D6_Substr = Yes) (CYP3A4_CLint > 20{50} AND CYP3A4_HLM_CLint > 30{75} AND CYP3A4_Substr = Yes)	- Metabolism
MUT 1A2 2C9 2C19 2D6 3A4 CL	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ser_AST = Elevated AND Ser_ALT = Elevated AND Ser_LDH = Elevated MUT_Risk > 1 (CYP1A2_CLint > 20{40} AND CYP1A2_Substr = Yes) (CYP2C9_CLint > 10{20} AND CYP2C9_Substr = Yes) (CYP2C19_CLint > 10{20} AND CYP2C19_Substr = Yes) (CYP2D6_CLint > 10{20} AND CYP2D6_Substr = Yes) (CYP3A4_CLint > 20{50} AND CYP3A4_HLM_CLint > 30{75} AND CYP3A4_Substr = Yes) CYP_HLM_CLint > 90{150} OR HEP_hCLint > 60{90}	Metabolism

13

Flip Side of the Coin: Capping Values

	Structure	OBJ_HIVI-ST	ADMET_Risk	SynthDiff
1		3.645	1.000	0.000
2		3.676	1.000	0.000
3		3.846	1.000	0.000
4	——он	3.506	0.431	0.131
5		3.173	1.000	0.243
6		3.250	1.000	0.384

Properties to optimize

	Name	Direction	Capping Value	
	<synthetic_difficulty+></synthetic_difficulty+>	Minimize	2.5	
	ADMET_Risk	Minimize		
	<fraction (%fb)="" bioavailable=""></fraction>	Maximize	90	
	Modify Selected Remove S	Selected	Remove All	
Tri	Trivially Simple Molecules:			
Ve	ry easy to make			
Very good in one objective				
very good in one objective				
 Capping value is assigned as the result when the actual value is "better" Value is "good enough" Capping value tends to filter out trivial molecules 				
•	Doesn't encourage the algorithms to go into "simplistic" compounds			

AIDD External Application File

External File Parameters

filePathAlias – directory name

- Defines [PATH] variable
- Can be set to AIDD output directory

commandLine – script or executable programBAT, shell script, or executable

structureFile – name of file to contain AIDD generated structures

• SDF or SMILES file

InputAttributes – comma separated list of AP attributes, e.g., S+logP, to be written to structure file

outputFile – name of file containing objective function value(s)

• Created by external program

objectivesList – names of objective functions from external program

objectiveMaximize – 0 if minimum is preferred and 1 if maximum is preferred

Pareto Optimal Selection 2.5 2.0 Point 1 – best y value 1.5 Point 2 – better x value than point 1 -1.0 Point 3 – better x value -1.5 than points 1 and 2 -2.0 -2.5

-3.0

.2 5

St SimulationsPlus Cognigen DILIsym Services Lixoft

3.0

Color: Pareto_Front

2 5

Compromise Solution

- Multi-objective, but combine related objectives (e.g. ADMET) into one : ADMET_Risk[™]
- Typical/Recommended use: 4-5 objectives
 - ADMET_Risk
 - Synthetic Difficulty
 - 1-2 activity models (e.g., activity and selectivity)
 - Good PK (e.g, bioavailability)

BACE1 Inhibitors

- BACE1 (β-secretase 1) cleaves the amyloid precursor protein producing a soluble peptide C99, which is the rate-limiting step in amyloid β formation. It is a target for Alzheimer's disease (AD).
 "Despite BACE1 inhibitor clinical trials conducted so far being discontinued for futility or safety
- Despite BACE1 inhibitor clinical trials conducted so far being discontinued for futility or safety reasons, BACE1 remains a well-validated therapeutic target for AD. A safe and efficacious compound with high substrate selectivity as well as a more accurate dose regimen, patient population, and disease stage may yet be found."*

*Hampel, et al. Biol Psychiartry. **2021**, Apr 15;89(8):745-756.

Acknowledgements

- AutoDock Ravindranath PA, Forli S, Goodsell DS, Olson AJ, and Sanner MF. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility, *PLoS Computational Biology* 2015, 11(12): e1004586.
- YASARA Krieger E and Vriend G. YASARA View-molecular graphics for all devices-from smartphones to workstations, *Bioinformatics*, 2014, 30(20), 2981-2982.
- Babel O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. *J. Cheminf.* **2011**, *3*, 33.
- 6FGY Veenstra, SJ. et al. Discovery of amino-1,4-oxazines as potent BACE-1 inhibitors. *Bioorg Med Chem Lett*, **2018**, 2195.
- Rombouts FJR et al. 1,4-Oxazine β-Secretase 1 (BACE1) Inhibitors: From Hit Generation to Orally Bioavailable Brain Penetrant Leads, J Med Chem 2015, 58, 8216.

Workflow for AutoDock AIDD Example 727_M1 728_M1 00 4074 004 732 M1 730 M1 731 M1 Convert to dominant Candidate molecules Convert to microstate from AIDD 3D AN A MARK TO MARK AND A DAMAGE A DAMAGE AND A prepare_ligand – **Return results** adfr - dock and define rotatable bonds to AIDD score ligand and charges

St SimulationsPlus Cognigen DILlsym Services Lixoft

Docking Score Statistics

Cognigen | DILIsym Services | Lixoft

Al-driven Lead Discovery

- Computer based de novo drug design background
- The AIDD Module in ADMET Predictor®
- Using chemically intelligent SMIRKS transformations to generate molecules
- Synthetic feasibility assessment
- Incorporating pharmacokinetic and ADMET liability predictions
- Penalizing out of scope predictions
- Using capping values when objective function value is "good enough"
- Using external programs to compute objective functions
- Selecting Pareto optimal compounds

