Applying in silico-in vitro-in vivo Extrapolation (IS-IV-IVE) Techniques to Predict Exposure and Guide Risk Assessment

SOT 58th Annual Meeting and ToxExpo March 12, 2019

> Michael S. Lawless, Ph.D. mlawless@simulations-plus.com Senior Principal Scientist Simulations Plus, Inc.

Applying IS-IV-IVE Techniques to Predict Exposure and Guide Risk Assessment

- PBPK models predict the relationship between dose and the exposure by accounting for the processes of ADMET
- IS-IV-IVE models allow
 - *in silico* and *in vitro* data to be extrapolated to estimate corresponding *in vivo* effects
- IS-IV-IVE provides
 - efficient characterization of potential chemical risk

IS-IV-IVE Techniques to Predict Exposure and Guide Risk Assessment

- What's happening *in vivo*?
- HTPK and PBPK simulations inputs and outputs
- Extended clearance classification system (ECCS) and related models
- Human and rat liver microsomal clearance models
- Cytochrome P450 models
 - Substrate/nonsubstrate models for nine (9) CYP isoforms
 - Sites of metabolism models for nine (9) CYP isoforms
 - Michaelis-Menten kinetic parameter models for five (5) CYP isoforms
- Applications Simulations in rats and humans for agrochemical, industrial, and pharmaceutical compounds
 Disclosure/Conflict of Interest

What's happening in vivo ?

* Modified from van de Waterbeemd, H, and Gifford, E. Nat. Rev. Drug Disc. 2003, 2:192-204.

HTPK Simulation PBPK Simulation

- Rat and human species
- Advanced Compartmental and Transit (ACAT[™]) model for GI tract
- Minimal PBPK
- IR tablet
- Passive absorption
- Linear liver clearance
- Renal clearance
- Mechanistic V_d
- Takes less than 0.06 seconds per structure

HTPK Simulation PBPK Simulation

- Preclinical and human species
- ACAT[™] model
- Full PBPK tissue concentrations
- Multiple dosage forms (PO, IV, dermal, inhalation)
- Active and passive absorption
- Linear and non-linear liver clearance
- Renal clearance
- Mechanistic V_d

from 2D structure

ECCS Classification System

Varma MV, Steyn SJ, Allerton C, El-Kattan, AF. Pharm. Res. 2015, 32(12), 3785-3802.

- Categorizes compounds according to the *rate-determining*, predominant clearance mechanism
 - Metabolism, hepatic uptake, or renal
 - Limited to small molecules, $MW \le 700 \text{ Da}$
- Based on physicochemical properties and passive permeability
 - Low or high MW (cutoff is 400 Da)
 - Ionization: acids/zwits or bases/neutral
 - Used MoKa to predict pKa (at pH = 7.0)
 - Low or high MDCK permeability (cutoff is 5 x 10⁻⁶ cm/s)
 - Used either experimental data or predictions
- Scheme was applied to 307 compounds

9

- Compounds had single clearance mechanism that accounted for >70% of systemic clearance
- Correctly categorizes ~92% of the compounds
 - Class 3B is "hep uptake OR renal". The above statistic counts these as correct if the observed value is hep uptake or renal

Comparison of ECCS and ECCS_Class

S+CL_Mech

- Ternary model to predict major clearance pathway (renal, metabolism, or hepatic uptake)
- There are no ambiguous categories

Set	No. of cmpds	Youden	MCC	Concordance	
Training	264	0.84	0.80	0.89	
Test	40	0.90	0.85	0.95	

Binary Classification Models to Predict Major Clearance Mechanism

Many drugs have a mixture of clearance pathways, i.e., <70% of the drug is cleared by a single mechanism. In fact, Varma was only able to characterize 307 out of 739 drugs cleared by a predominate pathway. We constructed binary classification models with the expectation that they might be more suitable when analyzing leads that might not have a single dominate clearance mechanism.

- S+CL_Metab predicts whether or not the rate-limiting clearance mechanism is metabolic
- S+CL_Renal predicts whether or not renal excretion dominates clearance
- S+CL_Uptake predicts whether or not the rate-limiting clearance mechanism is hepatic uptake

These models include *confidence estimates*. The table below lists the statistics for each model.

Model	Set	Negatives	Positives	Total	Correct	Concordance	Sensitivity	Specificity
SLCL Motab	Training	241	15	256	254	99.2%	100.0%	99.1%
	Test	41	7	48	47	97.9%	85.7%	100.0%
S+CL_Renal	Training	182	71	253	238	94.0%	94.3%	93.9%
	Test	41	10	51	47	92.1%	90.0%	92.6%
S+CL_Uptake	Training	86	167	253	236	93.2%	93.4%	93.0%
	Test	17	34	51	47	92.1%	91.1%	94.1%

HLM and RLM Models

These data sets were extracted from the ChEMBL database* and contains drugs and drug leads. Original references were checked for correct units and microsomal concentrations.

CYP Substrate?

N -20.8

CYP Substrate Classification Models

Model		Negatives	Positives	Total	Correct	Concordance	Sensitivity	Specificity
CVD1A2 Substr	Trn/Ver	753	379	1132	946	83.5%	80.7%	84.9%
CTPIAZ_SUDSU	Test	184	99	283	231	81.6%	80.8%	82.0%
CVD2A6 Substr	Trn/Ver	448	147	595	478	80.3%	82.3%	79.6%
CTPZA0_SUDSU	Test	119	30	149	118	79.1%	80.0%	78.9%
CVD2D6 Substr	Trn/Ver	437	192	629	507	80.6%	81.7%	80.0%
	Test	119	39	158	129	81.6%	84.6%	80.6%
CVD2C0 Cubeta	Trn/Ver	433	183	616	478	77.5%	77.5%	77.5%
CTP2C8_SUDSI	Test	109	46	155	120	77.4%	76.0%	77.9%
CVD2C0 Substr	Trn/Ver	794	300	1094	826	75.5%	80.0%	73.8%
CIP2C9_Substr	Test	196	78	274	203	74.0%	74.3%	73.9%
CVD2C10 Substr	Trn/Ver	812	259	1071	855	79.8%	80.3%	79.6%
CIPZCI9_SUDSI	Test	203	65	268	216	80.5%	72.3%	83.2%
CVD2DC Substr	Trn/Ver	814	421	1235	995	80.5%	80.2%	80.7%
CTP2D6_Substr	Test	149	70	219	181	82.6%	80.0%	83.8%
CYP3A4_Substr	Trn/Ver	390	892	1282	1060	82.6%	82.1%	83.8%
	Test	88	233	321	264	82.2%	82.4%	81.8%
CYP2E1_Substr	Trn/Ver	442	199	641	543	84.7%	80.9%	86.4%
	Test	102	59	161	146	90.6%	83.0%	95.0%

Data sources

- Dassault Systemes BIOVIA Metabolite Database¹
- Drugbank database²

• Rendic³

- Sheridan⁴
- Original literature references

The data sets contain drugs, druglike and non-drug molecules like agrochemicals (chlorpyrifos, malathion, tetrachlorobenzene, butachlor, trichlorethane, methoxychlor, hexacosinoic acid) and compounds that lack both N and O; none of which are drugs. There are also compounds that have 1 oxygen and are not steroids

¹http://www.3dsbiovia.com/products/collaborative-science/databases/bioactivity-databases/biovia-toxicity.html

² http://www.drugbank.ca

³ Drug Metab. Rev. **2002**; 34, 83-448.

⁴ J. Med. Chem. **2007**, 50, 3173-3184.

Approach for Sites of Metabolism (SOM) Models

- Collect/curate data from databases, literature compilations, literature articles
 - BIOVIA Metabolite Database
 - Sheridan et al., J. Med. Chem. 50 3173 (2007)
 - A great deal of review of literature both old and new
- Classify atoms of molecules as metabolized/not metabolized based on observed metabolites
- Generate atomic descriptors for each atom
 - EEM-Hückel charge model, parameterized from in-house *ab initio* database of partial charges
 - Reactivities: EEM σ atomic Fukui indices and Hückel π frontier orbital atomic densities
- Build Artificial Neural Network Ensembles (ANNEs) to predict sites of metabolism
 - Build atomic classification models for individual CYPs
 - 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4
- Each candidate atom receives a score
 - Highest scoring atoms are classified as sites

CYP 450 Typical Oxidations

• Carbon Hydroxylation:

$$|FeO]^{3+} + H_{C}^{O} \longrightarrow [Fe]^{3+} + HO_{C}^{O} \longrightarrow [Fe]^{3+} + HO_{C}^{O} \longrightarrow [FeO]^{3+} + X \longrightarrow [Fe]^{3+} + O_{C} \longrightarrow [FeO]^{3+} + X \longrightarrow [FeO]^{3+} + O_{C} \longrightarrow [FeO]^{3+} + X \longrightarrow [FeO]^{3+} + O_{C} \longrightarrow [FeO$$

• Heteroatom Dealkylation:

$$[FeO]^{3+} + HC - X \longrightarrow [Fe]^{3+} + HOC - X \longrightarrow O = C + HX$$

$$X = OR, N, SR$$

$$R_{2}^{1}$$

Red marks site of metabolic attack

Experimental CYP2D6 SOM for Propranolol

J. Pharmacol Exp Ther, **2000**, *294 (3)*, 1099-1105. *Drug Metab Dispos*, **1994**, *22 (6)*, 909-915.

CYP Site Model Performance

The composition of these data sets are similar to the substrate/nonsubstrate model data sets

CYP Site Model		Excluded Atoms	Included Atoms	Negatives	Positives	Concordance	Sensitivity	Specificity
1A2	Training	2374	3258	2747	511	85.9%	91.2%	84.9%
	Test	360	541	443	98	84.8%	85.7%	84.7%
2A6	Training	675	1086	920	166	87.8%	79.5%	89.2%
	Test	72	129	<mark>98</mark>	31	88.4%	80.6%	90.8%
0.0.0	Training	1041	1804	1559	245	90.4%	87.8%	90.8%
200	Test	188	310	254	56	88.7%	87.5%	89.0%
2C8	Training	1346	2081	1842	239	89.0%	90.4%	88.8%
	Test	208	320	274	46	88.1%	84.8%	88.7%
2C9	Training	1994	3022	2651	371	88.0%	87.3%	88.1%
	Test	432	490	417	73	85.5%	80.8%	86.3%
2C19	Training	1748	2802	2400	402	90.9%	88.6%	91.3%
	Test	217	368	313	55	87.8%	80.0%	89.1%
2D6	Training	2187	4173	3646	527	90.8%	91.5%	90.7%
	Test	325	638	554	84	90.8%	88.1%	91.2%
2E1	Training	768	1154	920	234	87.7%	88.5%	87.5%
	Test	148	201	156	45	89.1%	88.9%	89.1%
3A4	Training	6401	9938	8822	1116	85.3%	87.4%	85.1%
	Test	1456	2314	2057	257	84.7%	80.2%	85.3%

Excluded Atoms were not included in the performance statistics

Michaelis-Menten Kinetics

- K_m : Michaelis constant
 - a measure of the affinity of the substrate for the enzyme
 - a property of ES complex not dependent on [E] and [S]
- V_{max}: Maximum metabolic velocity
 - maximum rate (velocity) at a fixed [E]
 - directly proportional to the [E]
- CL_{int}: Intrinsic clearance
 - a flow-independent measure of the tissue or organ's ability to metabolize drugs

Zolpidem CYP3A4 Kinetic Parameters

von Moltke, LL et al. Br J Clin Pharmacol, **1999**, 48, 89-97.

Model Building for Kinetic Parameters

- Data sources:
 - BIOVIA Metabolite Database and public domain literature
 - Drug Metabolism & Disposition
 - Careful examination of MANY original articles*
- K_m , V_{max} , and CL_{int} models
- CYP 1A2, 2C9, 2C19, 2D6, 3A4, and 3A4 HLM
 - 18 total models
- Use atomic and molecular descriptors
- Develop regression models for each atomic site

K_m, **V**_{max}, and **CL**_{int} **Models Performance Statistics**

Model	Set	No. of Cmpds	RMS	R ²	Model	Set	No. of Cmpds	RMS	R ²	These data sets contain drugs, druglike
	Train	85	0.38	0.86		Train	87	0.47	0.84	nanhthalene, and agrochemicals like
IAZ K _m	Test	15	0.40	0.81	206 K _m	Test	15	0.50	0.82	carbaryl carbofuran chlornyrifos diazinon
1 4 7 1 /	Train	81	0.48	0.61		Train	97	0.50	0.65	diuron methoxychlor and parathion
IAZ V _{max}	Test	14	0.45	0.45	ZD6 V _{max} Test		17	0.49	0.55	
	Train	82	0.50	0.79		Train	86	0.59	0.59	
IAZ CL _{int}	Test	14	0.55	0.69	2D6 CL _{int}	Test	15	0.57	0.57	P^2 range is 0.67.0.97
	Train	68	0.43	0.80	3A4 K _m 3A4 V _{max}	Train	142	0.46	0.70	• $K_m = R^2$ range is 0.07-0.87
2C9 K _m	Test	12	0.40	0.87		Test	25	0.46	0.67	• Test set Rivise range is $0.30-0.50$ log units
	Train	63	0.47	0.76		Train	146	0.59	0.59	V_{max} R ⁻ IS 0.45-0.82
2C9 V _{max}	Test	11	0.47	0.76		Test	26	0.57	0.54	• Test set Rivise range is $0.45-0.57$ log units
	Train	65	0.48	0.77		Train	139	0.63	0.63	\bullet Test set \mathbf{DMSE} is 0.20.0.62 leg units
2C9 CL _{int}	Test	11	0.39	0.86	5A4 CL _{int}	Test	24	0.63	0.63	• Test set Rivise is 0.39-0.05 log utilits
2C10 V	Train	67	0.32	0.86		Train	117	0.47	0.83	
ZCI9 K _m	Test	12	0.36 0.71			Test	21	0.39	0.84	
2010.1/	Train	67	0.48	0.78		Train	105	0.44	0.68	
ZCI9 V _{max}	Test	12	0.49	0.82		Test	19	0.48	0.71	
2010 0	Train	65	0.52	0.81	3A4 HLM CL _{int}	Train	105	0.54	0.83	
ZCI9 CLint	Test	11	0.59	0.74		Test	18	0.53	0.79	

Agrochemical development: What You Want to Know Early On!

- Are the agrochemical or its residues likely to be toxic?
- How will it get metabolized *in vivo*?
 - in mammals in general
 - in humans & rats in particular
- If so, what are the likely metabolites?
- Are its metabolites likely to be toxic or not?
- How much pesticide or residue will get absorbed?
- How much of what gets absorbed will survive first-pass metabolism?

Pyrasulfotole (AE 0317309)

Paraphrasing the TOXNET record, "following both oral and intravenous administration in rat, most of the dose was excreted unchanged. Hydroxymethyl, desmethyl, and a benzoic acid fragment formed by complete removal of the pyrazole ring were observed as minor metabolites in urine and feces. Follow oral dosing, approximately 70% of the radioactivity was excreted in the urine and 30% in the feces by 48 or 52 hours."

Rat HTPK Simulation: predictions for rat: RLM $CL_{int.u} = 25 \mu l/min/mg MP$, $fu_p = 5\%$, %Fa = 100% and %Fb = 96% for a 0.1 mg dose.

Prediction of Rat %Fa and %Fb for Herbicides

81% predicted within 2-fold of the reported value and 3% within the experimental variability (±5%).

59% predicted within 2-fold of the reported value, with only 10% underestimated by more than 2-fold.

100

Observed values are mostly from radiolabel results extracted from EPA, EFSA, or WHO risk assessments based on radiolabel recovery. Dosages were often not reported so 2.5 mg was used. Observed %Fa comes from amount not excreted in the feces. %Fb comes from parent compound recovered in urine (it represents a lower bound).

Data is from:

H Kraehmer *et al. Plant Physiology* **2014**, *166*, 1132-1148. Y Zhang et al., Pest Management Science 2018, 74, 1979-1991.

Predicted Human %Fb from HTPK

- A database of 62 drugs including oral bioavailability (%Fb) and dose was constructed¹
- All compounds' reported major clearance pathways (MCP) were CYP-mediated²

¹ Doses and oral biovavailabilities from drug label or "Thummel KE et al., In: Brunton LL, Chabner BA, Knollmann BC, editors. Goodman & Gilman's the pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 2011."
 ² Toshimoto K et al, *Drug Metab. Dispos.* 42:1811-1819, November 2014.

10 mg oral dose simulation using human hepatocyte clearance¹

- 392 compounds with *in vitro* human hepatocyte CL_{int} (0 445 µl/min/million cells)
 - 14 compounds with out of scope aqueous solubility predictions are hidden

¹ Wetmore et al., *Toxicol. Sci.*, **2012**, 125(1), 157–174 and *Toxicol. Sci.*, **2015**, 148(1), 121–136.

%Fb v. %Fa, colored by log(HepCL)

%Fb v. log(AUC), colored by log(HepCL)

%Fb v. %Fa, colored by log(HepCL)

%Fb v. log(AUC), colored by log(HepCL)

%Fb v. %Fa, colored by log(HepCL)

%Fb v. log(AUC), colored by log(HepCL)

%Fb v. %Fa, colored by log(HepCL)

IS-IV-IVE Techniques to Predict Exposure and Guide Risk Assessment

- Mechanistic PK simulations require parameters, e.g., solubility, permeability, fraction unbound to plasma, hepatic clearance, etc.
 - QSAR/QSPR models based on the 2D structure of the molecule can be used to estimate these parameters
 - In vitro values can also be used as they become available
- ECCS and related models can be used to predict the major clearance pathway
- HLM and RLM clearance models were developed and used to estimate liver clearance in PK simulations
- Cytochrome P450 models are based on specific CYP isoforms and used to predict metabolites and kinetic parameters
- PK examples included agrochemicals and drugs

Acknowledgements & Thank You!

Robert D. Clark Marvin Waldman Robert Fraczkiewicz Pankaj R. Daga Jinhua Zhang David Miller Aleksandra Mikosz John DiBella Michael B. Bolger

