General Approach to Calculation of Tissue:Plasma Partition Coefficients for Physiologically Based Pharmacokinetic (PBPK) Modeling

Abstract:
Putpose: To conduct a comprehensive evaluation of methods for calculation of tissueplasma partition coefticients
with a focusus on correct prediction of volume of distribution and recommendation for a genereal appproach to $k p$

Methods: Kps were calculated by multiple methods for a set of about 80 drugs for which the experimentally
determined values in rat were reported in the literature. These included the methods developed by Poulin \& Theil determined values in rat were reported in the literature. These included the methods develoloed by Poulin $\&$ Theil
[Poulin 2001 and the mether
 equation, developed by Simulations Plus, Inc. was included in the comparison.
Results: Among the published approaches, the equations derived by Rodgers and Rowland provided better
general predicitions for tissueplasma partition coefficients for the compounds with low to moderate lipoophilicity.

 be physiologically explained. We have moditied the Rodgers and Rowland approach by developing a single equation which can be used for all compouns.
from neutrals and weak bases to strong bases.
Conclusions: Our modified Rodgers and Rowland equation accounts for a more mechanistic description of drug

 accuracy of Kp prediction.

Predicted Kps for ~ 80 compounds [Berezhkovskiy 2004, Poulin 2001, Rodgers 2007 and unpublished Roche measurements] calculated using four mechanistic approaches Methods accounting also for ionization and interactions with acidic phospholipids (Rodgers artitioning and non-specific binding to ans than methods accounting only for membanes he purple line represents the identity line and magenta lines show the limits of 3 -fold prediction error.

Simulations Plus (S_{+}) equation for prediction of tissue:plasma partition coefficients based on the Rodgers equation for Kp prediction. The original method by Rodgers, requiring separate equations for differen lasses of compounds, was modified into a single equation accounting for all drug interactions with the issue components. The magnitude of drug interaction with either tissue albumin or tissue acidic same (based on Kp comparisons) or better (based on Vss comparison) prediction than the origina Rodgers approach; (2) minimizes the effect of possible errors in pKa measurement (or prediction) fo
 components which are ionization-dependent.

Comparison of ionization effect on the Kp for two largest tissues and volume of distribution predicted by Rodgers and S_{+}method. The profiles were calculated for a model compound with $\log P=1$, blood-to-plasma ratio $=1, \mathrm{Fup}=1$ and a single base pKa ranging from 5 to 9 . The two separate Rodgers equations result in discontinuities in Kp and Vss profiles at $\mathrm{pKa}=7$. The S_{+} equation provides a smooth transition from a weak base which is mostly in neutral form and
interacts with tissue albumin to a strong base which is mostly in ionized form and interacts with tissue acidic phospholipids. Compound which is present as a significant fraction of neutral and cationic form at physiological pH will interact with tissue albumin as well as acidic phospholipids.

The major differences in prediction of Kps and Vss between the Rodgers and S equations will be for compounds with base pKa in the range ~ 5 to ~ 8. The set of compounds for which the individual Kp values were available did not contain a compounds for which come individual Kp values were available did not contain a the performance of the two methods was therefore done on the basis of Vss prediction. The experimental rat Vss values for 215 compounds (Roche
compounds) were obtained by non-compartmental analysis of plasma compounds) were obtained by non-compartmental analysis of plasma For each compound a "normalized error of prediction" was calculated as:

$$
N E=\frac{V s s_{p r e d}-V s s_{\text {exp }}}{{V s s_{\text {epp }}}}
$$

and "normalized error ratio" was calculated as:

The values of NER range from -1 to 1 . Positive NER values mean that the S equation gave better prediction of Vss than the Rodgers approach (NER value approaching 1 marks compounds where the prediction error from S_{+}equation was negligible compared to error from Rodgers approach). Negative NER values mean that the Rodgers approach predicted Vss more closely (NER value
approaching -1 marks compounds where the prediction error from Rodgers approach was negligible compared to the $\mathrm{S}+$ equation).

Both measures, normalized error and normalized error ratio, indicate slightly better predictions using the S_{+}equation than using the original Rodgers approach. Both methods, S+ and Rodgers, used adjusted Fup (poster M1313) in the Kp predictions.

References

Berezhkovskiy L.M.; J Jharm Sci 2004, 93:1628-1640 Rodgers T. Rio F-P.; J Pharm Sci 2000, 89:16-35 Rodgers T., Rowland M. . J Pham Sci Sci 2007, 96: 3151-3152

simulationsplus,inc.

