Modeling of Active Transport and Metabolism for *in vitro* Suspended and Sandwich Hepatocyte Assays Utilizing MembranePlus™

James Mullin Principal Scientist Simulations Plus, Inc.

Overview

 MembranePlus[™] – a software platform for simulation of drug transport in cell assays.

- Development of Hepatocyte Transport Model
 - Sandwich and plated hepatocytes.
 - Suspended hepatocytes.

- Model Case Studies
 - Sodium Taurocholate transport
 - Statins (uptake+metabolism)
 - IVIVE with combination of MembranePlus and GastroPlus

MembranePlus

Data Analysis

- Instant permeability output from molecular structure or experimental data.
- Unbound Intracellular concentrations (Membrane, cytosol, lysosome, etc.)
- In vitro K_m and V_{max} for enzymes and transporters
- Parameter sensitivity analysis (on logP, shaking rate, pH etc.)
- Sandwich and suspended hepatocyte model (version 2 imminent)
- DDI predictions (Coming Soon in Version 3)

Assay Prediction

- Permeability
- Intracellular concentrations (Membrane, cytosol, lysosome)
- Virtual Trials (coming soon)

MembranePlus – Software Overview

MembranePlus – Membrane Entry/Exit Rate Structure Based Model

• Observed vs. Predicted on 44 training datasets

 $log(V_i) = Intercept + C1 \times logP + C2 \times M RNG + C3(HBDH - HBD) + C4 \times HBAo$

Observed Concentration (uM)

Membrane entry and exit rates for anions and cations are determined based on logD vs. pH profile

MembranePlus – Lysosomal Trapping Model

rig. 1. The basis of pri partitioning of hpophilic anines into hysosomes. The diagram illustrates the mechanism by which lipophilic amines (i.e., CADs) accumulate in lysosomes. From plasma (pH 7.4) and cytosol (~7.2), a lipophilic amine $(\log P > 1, pK_a > 6.5)$ will readily diffuse across membranes in its unionized form (RNH₂) while maintaining Henderson-Hasselbach equilibrium with its ionized form (RNH₃⁺, which cannot readily diffuse across membranes). After diffusion into the acidic environment of the lysosome (pH 4–5), the equilibrium between charged and uncharged species shifts in favor of the ionized form of the lipophilic amine, limiting diffusion of the drug back into the cytosol and, in effect, trapping the drug in lysosomes. For highly permeable lipophilic amines, the concentration of unionized drug (RNH₂) at equilibrium is assumed to be the same in all three compartments (lysosomes, cytosol, and plasma). The figure is not to scale; lysosomes make up about 1% of the hepatocyte volume.

 V_i and V_o correspond to the membrane/water lysosome entry and exit rate pH = 4-5Lysosome membrane pH = 7.4Cell SimulationsPlus

Kazmi F., Drug Metab. Disp. 41(3):897 (2013)

Enzymes and Transporters - Equations

• Kinetics of carrier-mediated transport and metabolism is calculated using Michaelis-Menten kinetics:

$$\begin{split} \upsilon_{metab} &= \sum_{i} \left(\frac{V_{\max}^{i} \times c_{u}^{\text{intracell}}}{K_{m}^{i} + c_{u}^{\text{intracell}}} \right) \quad \upsilon_{efflux} = \sum_{i} \left(\frac{V_{\max}^{i} \times c_{u}^{\text{intracell}}}{K_{m}^{i} + c_{u}^{\text{intracell}}} \right) \\ \upsilon_{influx} &= \sum_{i} \left(\frac{V_{\max}^{i} \times c_{u}^{buffer}}{K_{m}^{i} + c_{u}^{buffer}} \right) \end{split}$$

- V_{max} units: μM/s (μmol/L/s)
- K_m units: μ M (μ mol/L)
- General units converter allows converting these into different types of units
- Transporter types: Influx and Efflux
- Transporter locations: Apical and Basolateral

Sandwich and Suspended Hepatocyte Model

- New to version 2.0 (expected May/June 2017)
- Model non-linear drug uptake and metabolism in:
 - Sandwich Hepatocytes
 - Plated Hepatocytes
 - Suspended Hepatocytes
- Inclusion of intracellular protein binding (free fraction)

Overview of Sandwich Hepatocyte Mechanisms

Well Plate Bottom

- Collagen is assumed to not affect transport processes
- Model is also applicable for plated hepatocytes when bile volume is not considered

Overview of Suspended Hepatocyte Mechanisms

Physiological Settings

👺 Cell Model Inputs: Deltorphin II	100uM			- • •
Cell Membrane Thickness (nm):	10.]	Num Of Lysosomes ? Per Cell:	100.
Cell Layer Thickness [µm]:	16.79		Lysosomal Membrane Thickness (nm):	10.
Cytosol pH:	7.22]	Lysosomal Volume Percentage Per Cell:	0.82
Fraction Unbound in Cytosol:	1.		Lysosomal pH:	4.
Bile Canalicular Volume Percentage per Cell:	3.4		Bile Canalicular pH:	7.2
Bile Canalicular Area % of Cell Membrane:	9.9		Bile Contraction Efflux Rate to Media (1/s)	0.
Cell Organelle Percentages				
Cell Membrane:	Cytosol:		Lysosome L Membrane:	ysosomal Liquid Phase:
0.35736	69.643		0.595	29.405
		<u>o</u> k	<u>C</u> ancel	<u>U</u> se Default

- Plated hepatocytes can be modeled by setting bile volume and area percentages to 0.
- Bile pockets contract and open/release drug to the media thus a first order bile efflux rate is available

Case Study 1: Sodium Taurocholate Uptake Into Bile

Sodium Taurocholate

AP 7.2 = ADMET Predictor v. 7.2 S+ stands for properties predicted with Simulations Plus models S+Sw = solubility in pure water

- Experimental data from Qualyst Guo, ISSX 2014
- All properties except K_m values from ADMET Predictor

Property	Value
S+IS (mg/mL) @ pH 2.78	0.0184
S+pKa (Acid)	1.1
S+SF	906
S+pH	2.78
S+logP	0.82
S+Peff (x10-4 cm/s)	0.36
DiffCoef (x10-5 cm/s)	0.53
S+fumic	0.911

Fig. 3. Observed (circles) and simulated (lines) d_{g} -TCA accumulation in lysate [from cells+bile and cells] (black) and efflux buffer [Ca²⁺-containing and Ca²⁺ free] (red). Representative graph from one of n=3 experiments. Recovered estimates for CL (mean and SD):

(µL/min/mg protein)	Mean	SD
CL _{Uptake}	6.97	1.39
CL _{BL}	0.379	0.12
CL _{Bile}	0.827	0.30

Canalicular Uptake in Sandwich Hepatocytes

• Guo, 2014 ISSX Poster

Na⁺ Taurocholate Model Assumptions

- Assumptions
 - No protein binding for Na Taurocholate
 - No stirring
 - Complete monolayer of cells (100% viability)
 - ADMET Predictor values for properties and transport model parameters calculated using calibration
- Literature values for K_m were used as a starting point for building the model.
- K_m values are similar across species
 - Swift-Mol-Pharm-2010-7(2)-491-500

Transporter	K _m (μΜ)	Cells	Literature Source
OST alpha/beta	25.8	Human	Swift-Mol-Pharm-2010-7(2)-491–500
Overall Uptake	19	Rat	Schwarz-Eur-J-Biochem-1975-55-617-623
NTCP	6	Human	J-Exp-Biol-2001-204-1673-1686
BSEP	5	Rat	J-Exp-Biol-2001-204-1673-1686

Cell Assay Inputs					
Feed Solution Conc.	1,2.5	μM			
BSA	4	%			
Well size	24	well			
Volume	0.3	mL			
Cell Vol.	6.46	pL			
Cell Layer Thickness	18.6	micron			
Cell Den	0.4	Mcell/well			

TCA Results 1 μM Donor Experimental K_m Values

• Experimental K_m values utilized from literature and V_{max} values fit to data.

 We have obtained superior model results with new datasets but they can not be shown until published.

П

0.1

0.2

0.3

Simulation Time (h)

0.5

0.4

0.6

Case Study 2: Quantification of Influx Transport vs. Metabolism Statin Compounds

Suspended Hepatocytes

Quantify the Relative Importance of Influx Transport (OATP1B1) vs. Metabolism

FIG. 3. Typical plots for atorvastatin (A and D), cerivastatin (B and E), and indomethacin (C and F) cell and medium data and associated WinNonlin-generated fits to the model (Fig. 1). A to C, concentration of drug in cells and medium; D to F, amount of drug in cells or medium: cells (\triangle , cells; \blacktriangle , medium).

• Media and whole cell concentration data for atorvastatin, cerivastatin, and indomethacin.

Paine, DMD (2008) 36:1365–1374

Used a simple compartmental model to extract clearance values

Atorvastatin

• Solubility

- S+ Sol = 0.18 mg/mL @ pH 4.5
- Sol (water exp) = 0.11 mg/mL
- Sol (pH 1.2) = 0.01 mg/mL
- Sol (pH 7.4) = 0.70 mg/mL
- S+SF = 285
 - SF (Exp) = 70
- S+ LogP 4.28
 - LogP exp = 4.18 (biobyte)
- S+ pKa (Acid) = 4.71,11.05
 - pKa Exp = 4.51 (Schonherr_Eur-J-Pharm-Biopharm_2015-155-170)
- OATP1B1 Substrate (K_m = 0.77 μM) Vildhede_Drug Metab_Disp_2014_42.7_1210-1218
- Caco-2 Papp (MembranePlus) = 4.80E-05 cm/s
- S+ Metabolism (2C9)
 - Experimental (3A4) ($K_m = 44.9 \mu M$)

Park_Xenobiotica_2008_38.9_1240-1251

Cerivastatin

- Solubility
 - S+ Sol = 0.2 mg/mL @ pH 4.92
- S+SF = 280.7
- S+ LogP 3.04
 - LogD exp = 3.26 @ pH 5 (biobyte)
- S+ pKa (Acid/Base) = 4.39, 5.39
- OATP1B1/1A1? Substrate (K_m = 5.86 μM) Xenobio-Metabol-Dispos-2000-15(3)-219-225
- Caco-2 Papp (MembranePlus) = 7.5E-08 cm/s
- S+ Metabolism (3A4) ($K_m = 11.8 \mu M$)

AP 7.2 = ADMET Predictor v. 7.2 S+ stands for properties predicted with Simulations Plus models S+Sw = solubility in pure water

Model Results Atorvastatin

Model Results, Cont.

	TABLE 2			
Derived and asso	ciated predicted in vitro parameters for	atorvastatin, cerivastatin, and indometh	acin	
Data are mean \pm S.D., and n = 3 unless otherwise state	ed.			
	Atorvastatin	Cerivastatin	Indomethacin	
$CL_{int,uptake}$ (μ l/min/10 ⁶ cells) CL_{max} (μ l/min/10 ⁶ cells)	375 ± 45	413 ± 47	599 ± 101 237 ± 63	
$CL_{int,met}$ (µl/min/10 ⁶ cells) Ψ	4.3 ± 0.65 18	2.3 ± 0.6 7.8	1.0 ± 0.49 3.5	
$k_{\rm mem}$ (ml) ${\rm fu}_{\rm rell}$	$\begin{array}{c} 0.092 \pm 0.007 \\ 0.011 \pm 0.0002 \end{array}$	$\begin{array}{c} 0.15 \pm 0.04 \\ 0.0081 \pm 0.001 \end{array}$	$\begin{array}{c} 0.15 \pm 0.13 \\ 0.054 \pm 0.041 \end{array}$	
CL_{inc} (μ l/min/10 ⁶ cells) CL_{med} (μ l/min/10 ⁶ cells)	10 ± 7 68 ± 31	0.0 ± 2.0 17 ± 14	$\begin{array}{c} 4.0 \pm 2.3 \\ 7 \pm 4 \end{array}$	
Vss _{med} (ml/10 ⁶ cells)* f _{med,ss}	6 ± 2 0.14 ± 0.04	0.2 ± 0.06	$2 \pm 0.4 \\ 0.54 \pm 0.1$	
*At a cell concentration of 1 × 10 ⁶ cells/ml. Paine, DMD (2008) 36:1365–1374				

Atorvastatin Results

V _{max} 3A4 (umol/s/L)	0.119
V _{max} OATP1B1(umol/s/L)	31.9
Cl _{met} (uL/min/Mcell)	63 (68 Lit.)
Cl _{upt} (uL/min/Mcell)	471 (375 Lit.)

Cerivastatin Results

V _{max} 3A4 (umol/s/L)	3.74E-02
V _{max} OATP1B1(umol/s/L)	295.28
Cl _{met} (uL/min/Mcell)	20 (17 Lit.)
Cl _{upt} (uL/min/Mcell)	704 (413 Lit.)

Model Comparison

• The mechanistic model in MembranePlus achieved similar result as the simpler compartmental model with fewer fitted parameters

	Compartmenal model*	Membrane Plus
Intracellular volume	Fitted	System parameter
Cell membrane volume	Fitted	System parameter
Membrane/water partitioning (kmem)	Fitted	Predicted from compound properties
Active uptake	Fitted	Fitted
Passive diffusion	Fitted	Predicted from compound properties (atorvastatin only)
Metabolism	Fitted	Fitted

*Paine, DMD (2008) 36:1365–1374

Case Study 3: In Vitro to In Vivo Extrapolation Using MembranePlus and GastroPlus

MembranePlus^{**}

in vitro permeability simulation software

Copyright 2017 • Simulations Plus, Inc. • All rights reserved

GastroPlus^{**}

Simulation Software for Drug Discovery and Development

Copyright 2017 • Simulations Plus, Inc. • All rights reserved

Propafenone Metabolism Suspended Hepatocytes

AP 7.2 = ADMET Predictor v. 7.2 S+ stands for properties predicted with Simulations Plus models S+Sw = solubility in pure water

- Reports indicate it is a CYP2D6 substrate and has saturable dose dependent kinetics.
- Have IV data to compare predicted $\rm K_m$ and $\rm V_{max}$ to.

Propafenone Human Hepatocyte Data

- 100 rpm
- 2 mL incubation
- 1 Mcell/mL

FIG. 2. A, disappearance of propafenone in cryopreserved human hepatocytes at various initial concentrations. Propafenone at concentrations of 0.05, 0.2, 1, and 5 μ M was incubated with 1 × 10⁶ cells/ml human hepatocytes individually prepared from three donors. Each point represents the mean ± S.D. of the remaining percentage of substrate to the initial concentration in hepatocytes from three donors. B, relationship between initial substrate concentration and depletion rate constant of propafenone in cryopreserved human hepatocytes. Each point represents the mean ± S.D. of depletion rate constants of three donors. The line represents the curve predicted from eq. 1.

Komura, Drug metabolism and disposition 33.6 (2005): 726-732.

Fit to In Vitro Data

- K_m = 0.0146 μM
- V_{max} = 9.27E-02 μmol/s/L cytosol
- V_{max} Converts to :
- 2.17E-02 nmol/min/ Mcell

K_m calculated was lower than the paper which is indicative of the true intracellular K_m based on unbound intracellular concentration

In vivo K_m / V_{max} Conversion GastroPlus

🥵 Metabolism and Transporter Units Converter: User conversion factors					
Convert CLint	Convert Km and Vmax	-	Convert T1/2	ד	ransporters
In vitro assay type: Microsomes Hepatocytes CrCYP Cytosolic Protein Hide Advanced Options Body Weight 74 Mill Cells/g Tiss 120 Hepat Conc in Save Current Settings as Defa	In vitro fraction unbound: Fu plasma Fu calc (Austin) Fu calc (Hallifax) User defined 100 % In vitro value is unbound Km and Ymax values exp to table! s Tissue Weight 1800 drug Mwt 341.45 vitro [Mcells/m] 1	in vitro Vm in vitro K In vivo Vm In vivo Km ported For to f nzyme Tissue	ax 0.0217 nmol/m m 0.0146 umol/L ax 0.02667 mg/s u 4.985E-3 mg/L rows with PBPK locatio 3.74E-4 mg/s/mg-enzym Transfer 2D6 Km and pmol/f	hin/10^6 cells Metabolite: NONE n, Vmax will be re upon export. I Vmax values to dill Cells 2.533 Physiology	Converted Enzyme table Mwt 55801 Human I.926E+4 L/h
Restore GastroPlus Setting	s				
					<u>C</u> lose

Prediction of 70 mg IV Bolus Dose

• PBPK model with default parameters (Lukacova method) in GastroPlus with the *in vitro* extrapolated CYP2D6 clearance

Conclusion

- MembranePlus has multiple capabilities to assess
 - Passive and active drug transport in various assays
 - Interplay between metabolism and passive/active drug transport:
 - Sandwich Hepatocytes
 - Plated Hepatocytes
 - Suspended Hepatocytes
 - Drug disposition in Bile
 - Sandwich Hepatocytes
 - Drug concentration within cellular structures
 - Lysosomes, lipid bilayers
 - Extract relevant parameters for IVIVE in GastroPlus
 - Additional validation with datasets and software release imminent

