Predicting Five Rat Acute Toxicity Endpoints with ANNE Models using ADMET Predictor™
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» Alternative methods are being explored to predict the toxicity of I\/Iolecular Descriptors \ EEL e B
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e Cheminformatics (QSTR) presents a good alternative to animal testing I . | . . .
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Why Artificial Neural Network Ensemble (ANNE)? v’ Electrotopological State Indices e .::»o R S .
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v Multiple underlying mechanisms of action — 5 P T ke Bl SRR ik

v’ Datasets studied (e.g., rat LD50) are large and chemically diverse

(X descriptors by Y neurons)

v" Moriguchi Descriptors ®  in-scope * L. applicability domain
v" Functional Groups Predictions

v’ Multiple and wide variety of data sources

“Very Tox” Category “Non Tox” Category
v’ Simple regression methods like MLR may prove insufficient . .
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e Ensemble methods, such as ANNE and Random Forest, have proven to ADMET Predictor 3" (6.5%) 3 (31.3%)
be robust enough to tackle this intensive task — o 5
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e Five endpoints were provided to model e 3| 2255 343 5| 1242 391
: : (79.5%) (12.1%) (43.8%) (13.8%)
v’ Rat LD.,and “Very Toxic”, “Non Toxic”, “EPA Cat” & “GHS Cat” - } A AR . _ _ _
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v’ The labels in the four end-points are dependent upon rat LD, ADMET Properties Predicted Predicted

R-Table Generation/Analysis

“EPA” Category “GHS” Category

Physicochemical

75 48 106 360 5 27 70 83 222 799

4 (1.0%) | (2.5%) | (2.9%) | (7.8%) | (28.2%)

and Biopharm 09%) | (1.7%) | (3.8%) | (12.8%)

e.qg. S +logP, S + logD
Solubility, PPB, Diff
Coef, RBP, pKa,
Permeability, etc

Why Is Dataset Curation Necessary?

29 93 149 447 284
(1.0%) | (3.3%) | (5.3%) | (15.8%) | (10.0%)

84 372 533 408
(3.0%) | (13.2%) | (19.0%)

w

(14.5%)

e The “QSAR-ready structures” provided as training set needed careful
curation

46 86 90 120
(1.6%) | (3.0%) | (3.2%) | (4.2%)

ADMET Predictor-
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Data Visualization De novo Design

Observed
Observed

165 303 128
(5.9%) | (10.8%) | (4.6%)

)

ADMET Property
Estimation and
Model Building

Metabolism
e.g. CYP substrate,
CYP Kinetics, SoM,
HLM CLint, UGT’s

45 84 19
(1.6%) | (3.0%) | (0.7%)

173 46
(6.2%) (1.6%)

Incorrect tautomer updated to Correct tautomer

1| 33 17
(1.2%) | (0.6%)

Uncertainty in structures is not useful

substrates, etc
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CASRN Actual Structure Provided SMILES C[ predicted predicted
| )— _
Cl—X - Toxicity . " S
__x O: :@ O ¢ o Mool ADMET Modeler Models predicted fewer false negatives compared to false positives.
| toxicity, mutagenicity, - . .
36088-22-9 o QI j;i/ = e o, Thus, they erred on the side of caution, e.g., fewer toxic compounds
- gk sic were incorrectly predicted. This can be seen in the EPA and GHS
= N s S category predictions which show fewer incorrect compounds in the
- ° . , lower right-hand corner than the upper left-hand corner.
3446>-46-8 Qj@ — ];Ifi[ Correct tautomer assignment is
- necessary in model building

Validation Training Test Set Outside Performance Performance

Model Model Performance & Analysis

Endpoint

exercise as well as for correct

Data Size Set AD (%) On Training' On Ext Test'
prediction ) 1 Qo
EPACat_1 | EPA class (1-4) 2812 6531 1633 50 (1.8%) 0.689 0.696 +  All the models show comparable
* Matched Molecular Pair Analysis shows a few large activity cliffs EPACat_2 | EPA class (1-4) 2812 6531 1633 |51 (1.8%) 0.693 0.691 performance on both training & test set
e The data is questionable and hence excluded GHSCat_1| GHS class (1-5) 2882 6951 1648 51 (1.8%) 0708 0.666 * Overall statistics suggests that models are
22787-38-2 o7 Structure |dentifier LD30_mgkg - NOT OVERTRAINED
S GHSCat_2 | GHS class (1-5) 2882 6951 1648 |51 (1.8%)|  0.689 0.671 «  Almost all compounds were predicted
LD50 1 |LDsg 2172 Existing Model> | 41 (1.8%) 0.595 0.638 within applicability domain of models.
2152751  Only~50 compounds (1.5% ) were
4226-95-3 LD50_2 (LD 2172 5037 1209 41 (1.8% 0.614 0.605 . : :
- -9 (1.8%) predicted out of the AD, 48 contained a S,
NonTox_1|LD50 > 2,000 mg/kg 2887 7059 1246 54 (1.9%) 0.765 0.750 Se, or heavy metal atom and 2 compounds
” NonTox_2|LD50 > 2,000 mg/kg| 2887 | 7059 1246 |55(1.9%)| 0.771 0.748 exceeded the 256 heavy atom limit of
ADMET Predictor.
VeryTox_1|LD50 < 50 mg/kg 2891 6699 1675 |52 (1.8%) 0.675 0.620
T4 VeryTox_2| LD50 < 50 mg/kg 2891 6699 1675 |53 (1.8%)|  0.809 0.825 SimulationsPlus
o | | SCIENCE + SOFTWARE = SUCCESS
1 BA for EPA, GHS, NT, and VT. TST_RMSE for LD.; % Existing model from ADMET Predictor was used to predict LD,




