Navigating Synthon Space: Property-Driven Molecular Optimization for Pharmacokinetics

Rafał A. Bachorz Simulations Plus

Agenda

- The Complexity of Chemical Space
- Synthons as a Smarter Representation
- PK Profiling with ADMET Predictor
- Multicriteria Decision Analysis with VIKOR
- SynthonForgePlus multiobjective generative chemistry framework
- Workflow and Implementation
- Use Case:
 - RORγ Agonist Optimization (unconstrained) with 3 objectives
 - RORγ Agonist Optimization (targeted) with 4 objectives
- Summary & Outlook

The Complexity of Chemical Space

The Chemical Space is huge

- The sizes:
 - Known drugs (10⁴)
 - ZINC database (10⁹)
 - Constructible drug-like space (10²⁰)
 - Total theoretical space (10⁶⁰)
 - Total number of atoms in universe (10⁸⁰)
- Exhaustive enumeration is computationally infeasible and chemically redundant.
- Even large commercial databases (ZINC, REAL) represent only a tiny fraction.
- We need **goal-directed** exploration to extract value from this vastness.
- Smart, navigable, and property-driven strategies.

Brute-force enumeration is like searching for needles in a cosmic haystack.

Beyond enumeration: Constructing the Search Space

- Traditional enumerated libraries are:
 - Static: fixed compounds, no adaptation to project needs.
 - Redundant: large portions are chemically or pharmacologically similar.
 - Costly: in silico screening of billions still misses the mark.
- Constructive strategies (like synthonbased design) provide:
 - Scalable expansion of space on-demand.
 - Relevance-filtered by synthesis feasibility and property objectives.
 - Efficiency: dramatically smaller yet more diverse effective libraries.

Don't search the haystack—build the needle.

Synthons as a Smarter Representation

- Synthons = reactive building blocks enabling constructive exploration.
- Synthetic accessible (80-90% success rate).
- Flexible and modular; far more efficient than enumerated space.
- Based on Freedom Space 3.0 from ChemSpace¹: curated, synthesisrelevant fragment library.
- Other fragment libraries also possible (e.g.: e-molecules, WuXi).

¹ Protopopov MV, Tararina VV, Bonachera F, et al. The freedom space – a new set of commercially available molecules for hit discovery. *Molecular Informatics*. 2024;43(12):e202400114. doi:<u>10.1002/minf.202400114</u>

- **SynthonForgePlus**: A framework for property-driven and multi-objective molecular design.
- Combines:
 - Synthon-based construction/orchestration
 - ADMET Predictor[®] (via pyADMETPredictor)
 - MCDA (Multicriteria Decision Analysis)
 - Integration with HTPK for rapid PK modeling
- Enables dynamic, goal-oriented exploration of fragment chemical space.

HTPK profiling

- SynthonForgePlus integrates ADMET Predictor to assess key PK endpoints.
- Enables early-stage selection with predictive modeling:
 - Clearance
 - Fraction bioavailable
 - Cp(t) profiles
 - $-C_{min}, C_{max}$
 - AUC
 - $-T_{1/2}$
 - etc.

Modified from van de Waterbeemd, H, and Gifford, E. Nat. Rev. Drug Disc. 2003, 2:192-204

HTPK profiling

- SynthonForgePlus integrates **ADMET Predictor to assess key PK** endpoints.
- Enables early-stage selection with predictive modeling:
 - Clearance
 - Fraction bioavailable
 - Cp(t) profiles
 - $-C_{min}, C_{max}$
 - AUC
 - $-T_{1/2}$
 - etc.

Predicts:

- Human, rat, mouse, dog, and monkey species
- IR tablet, IR solution, and IV bolus
- Percent absorbed (aka HIA)
- Oral bioavailability (aka F%)
- Dose required for plasma concentration
- Volume of distribution (L/kg)

simulate absorption

MCDA: VIKOR method

- VIKOR method (VlseKriterijumska Optimizacija I Kompromisno Resenje).
- Multi-criteria decision analysis (MCDA) technique.
- Ranking from among alternatives in the presence of conflicting criteria.
- Regret and Utility measures.
- Each alternative ranked individually.
- Incorporation of user preferences.
- Extensively used in **SynthonForgePlus**.

- SynthonForgePlus: A framework for propertydriven and multi-objective molecular design.
- General diagram of Multiparameter Optimization (MPO) Loop.
- We will go step-by-step.

- SynthonForgePlus: A framework for propertydriven and multi-objective molecular design.
- User inputs:
 - Seed compounds
 - Definition of synthon space (here Freedom Space 3.0 from Chemspace)
 - Other settings

- SynthonForgePlus: A framework for property-driven and multi-objective molecular design.
- Compound fragmentation.
- BRICS (Breaking of Retrosynthetically Interesting Chemical Substructures)¹ or exhaustive approach.
- The latter: fragmenting the compound into many possible pieces.
- Neglecting small, not-relevant fragments.

¹Degen J, Wegscheid-Gerlach C, Zaliani A, Rarey M. On the Art of Compiling and Using "Drug-Like" Chemical Fragment Spaces. *ChemMedChem*. 2008;3(10):1503-1507. doi:<u>10.1002/cmdc.200800178</u>

- SynthonForgePlus: A framework for propertydriven and multi-objective molecular design.
- Finding most similar synthons.
- Morgan fingerprints (FPs) with FPSim2.
- Form Current Synthons Set (CSS).
- CSS: key artifact in the optimization loop.

- SynthonForgePlus: A framework for propertydriven and multi-objective molecular design.
- CSS is the object which is iteratively refined.
- Random selection of reactions and complementary synthons.
- Form Complete Reactant Sets.

- SynthonForgePlus: A framework for propertydriven and multi-objective molecular design.
- Enumeration.
- Turning Complete Reactant Sets (CRS) into compounds.
- Current Candidates.
- Needed only for quality estimation.

- SynthonForgePlus: A framework for propertydriven and multi-objective molecular design.
- Application of ADMET Predictor and HTPK to get the properties.
- Other objectives also possible (e.g. similarity to a reference compound).

- SynthonForgePlus: A framework for property-driven and multi-objective molecular design.
- MCDA: Multicriteria Decision Analysis/Aiding.
- Application of MCDA Vikor method in drug discovery¹.
- Global utility function incorporating all objectives (with user weights).
- Ranking, best compounds on top.

¹ Bachorz RA, Lawless MS, Miller DW, Jones JO. Multi-Criteria Decision Analysis in Drug Discovery. *Applied Biosciences*. 2025;4(1):2. doi:<u>10.3390/applbiosci4010002</u>

- SynthonForgePlus: A framework for propertydriven and multi-objective molecular design.
- Pruning phase.
- The best compounds with highest MCDA ranks.
- The best compounds turned back into synthons.
- Form new CSS and are inherited to next iterations.

- SynthonForgePlus: A framework for property-driven and multi-objective molecular design.
- Closing the MPO loop.
- The optimization process continues till convergence criteria are met:
 - Predefined number of iterations.
 - CSS does not change significantly.
 - Calculation time.
- Results provided as MCDAsorted compounds.

Use cases

- Retinoic acid receptor-related orphan receptor gamma (RORγ) is a nuclear receptor that regulates:
 - Differentiation and function of Th17 cells.
 - Expression of IL-17 cytokines, central to pathogenesis of psoriasis, rheumatoid arthritis, and Crohn's disease.
- RORγ agonists:
 - Cancer immunotherapy.
 - Autoimmune modulation.
- Recent experiences with the design of inverse agonists¹.

¹ Bachorz RA, Paswwińska J, MS, Miller DW, Sałkowska A, Karaś K, Karwaciak I, Jones JO, and Ratajewski M. Identification of a novel indolizine RORγT inverse agonist using the AI-driven Drug Design platform. Accepted in *ACS Med. Chem. Lett.*

• Setup:

- Seed: well-known strong agonist of RORγ (pEC50: 8.2).
- Fragmenting procedure: BRICS
- Objectives:
 - ADMET_Risk (0.25), direction: min
 - %Fb (0.25), direction: max
 - pEC50 (0.50), direction: max
- HTPK setup:
 - Species: human
 - Route: IR Tablet
 - Dose: 1 mg/kg BW

After BRICS fragmentation:

• Results:

- The count of resulting population: 1098.
 - Scatter plot of all compounds.
 - Only predicted as active are important.
- Pareto front (10 compounds)
- ε-Pareto optimality: allows fo some objective margin (146 compounds)

ADMET_Risk

- The count of resulting population: 1098.
- Scatter plot of all compounds.
 - Only predicted as active are important.
- Top MCDA compounds.
 Pareto front (10 compounds).
 r-Pareto optimality: allows for some objective margin (146

• Results:

- The count of resulting population: 1098.
- Scatter plot of all compounds.
- Only predicted as active are important.
- Top MCDA compounds.
 Pareto front (10 compounds).
 E-Pareto optimality: allows for some objective margin (146

• Results:

- The count of resulting population: 1098.
- Scatter plot of all compounds.
- Only predicted as active are important.
- Top MCDA compounds.
- Pareto front (10 compounds).
 E-Pareto optimality: allows for some objective margin (146 compounds).

• Results:

- The count of resulting population: 1098.
- Scatter plot of all compounds.
- Only predicted as active are important.
- Top 10 MCDA compounds.
- Pareto front compounds (10).
 - E-Pareto optimality: allows for some objective margin (146 compounds).

• Results:

- The count of resulting population: 1098.
- Scatter plot of all compounds.
- Only predicted as active are important.
- Top 10 MCDA compounds.
- Pareto front compounds (10).
 - E-Pareto optimality: allows for some objective margin (146 compounds).

Compounds on Pareto-front not always relevant, here due to high ADMET_Risk.

Therefore, we look at the top 10 MCDA compounds first.

MCDA rank	ADMET_Risk	%Fb	pEC50	
0	1.1	95.5	8.29	
1	0.5	91.2	8.26	
2	0.9	90.7	8.26	
3	1.9	97.2	8.29	
4	0.7	86.6	8.27	
5	1.3	96.6	8.21	
6	1.3	94.7	8.22	
7	1.7	87.7	8.31	
8	1.5	87.1	8.30	
9	1.8	90.6	8.28	

MCDA rank	ADMET_Risk	%Fb	pEC50	
0	1.1	95.5	8.29	
1	0.5	91.2	8.26	
2	0.9	90.7	8.26	
3	1.9	97.2	8.29	
4	0.7	86.6	8.27	
5	1.3	96.6	8.21	
6	1.3	94.7	8.22	
7	1.7	87.7	8.31	
8	1.5	87.1	8.30	
9	1.8	90.6	8.28	

MCDA rank	ADMET_Risk	%Fb	pEC50	1
0	1.1	95.5	8.29	
1	0.5	91.2	8.26	
2	0.9	90.7	8.26	
3	1.9	97.2	8.29	
4	0.7	86.6	8.27	
5	1.3	96.6	8.21	
6	1.3	94.7	8.22	
7	1.7	87.7	8.31	
8	1.5	87.1	8.30	
9	1.8	90.6	8.28	

-70	1.1	•	•	pEC50 > 8.0 Pareto front	nounds
			8		ipounds
-75			88		
-80					
-85 lega	•	3			
-90		8 00 0 0			
	8 90				•
-95					8 00
-100					

MCDA rank	ADMET_Risk	%Fb	pEC50	T
0	1.1	95.5	8.29	
1	0.5	91.2	8.26	
2	0.9	90.7	8.26	
3	1.9	97.2	8.29	
4	0.7	86.6	8.27	
5	1.3	96.6	8.21	
6	1.3	94.7	8.22	
7	1.7	87.7	8.31	
8	1.5	87.1	8.30	
9	1.8	90.6	8.28	

• Setup:

- Seed: well-known strong agonist of RORγ (pEC50: 8.2).
- Fragmenting procedure: BRICS
- Sometimes unconstrained minimizing/maximizing is not best approach.
- Objectives:
 - ADMET_Risk (0.10), direction: min
 - Clearance (0.35), target: 10 L/h
 - Fup (0.15), target: 55%
 - pEC50 (0.40), direction: max
- HTPK setup:
 - Species: human
 - Route: IR Tablet
 - Dose: 1 mg/kg BW

• Setup:

- Seed: well-known strong agonist of RORγ (pEC50: 8.2).
- Fragmenting procedure: BRICS
- Sometimes unconstrained minimizing/maximizing is not best approach.
- Objectives:
 - ADMET_Risk (0.10), direction: min
 - Clearance (0.35), target: 10 L/h
 - Fup (0.15), target: 55%
 - pEC50 (0.40), direction: max
- HTPK setup:
 - Species: human
 - Route: IR Tablet
 - Dose: 1 mg/kg BW

• Results:

- The count of resulting population: 1053.
 - Scatter plot of all compounds.
 - Only predicted as active are important.
 - Pareto front (10 compounds)
 - ε-Pareto optimality: allows fo some objective margin (146 compounds).

ADMET Risk

- The count of resulting population: 1053.
- Scatter plot of all active compounds in the deviation space.
 - Top MCDA and Pareto-front compounds. Switch back to the native space

- The count of resulting population: 1053.
- Scatter plot of all active compounds in the deviation space.
- Top MCDA and Pareto-front compounds.
 - witch back to the native space.

- The count of resulting population: 1053.
 - Scatter plot of all active compounds in the deviation space.
- Top MCDA and Pareto-front compounds.
- Switch back to the native space.

	122-122	100		
24	Sim	ulatio	ncDlug	-
	JIII	lauo	IISFIUS	-

NCDA rank	ADMET_RISK	Clearance [L/h]	Fup [%]	pEC50	
0	5.4	10.0	46.9	8.44	
1	4.8	9.3	41.3	8.28	
2	4.8	10.1	38.9	8.29	
3	3.6	8.7	35.9	8.33	
4	3.8	9.7	47.0	8.18	
5	2.0	10.5	42.0	8.18	
6	4.5	9.0	35.3	8.28	
7	2.3	9.6	30.2	8.32	
8	3.0	11.4	33.0	8.31	
9	6.3	13.7	56.5	8.34	

S+ SimulationsPlus

Ν	IA	S	D	4	Q	:	S	L	Ρ

MCDA rank	ADMET_Risk	Clearance [L/h]	Fup [%]	pEC50
0	5.4	10.0	46.9	8.44
1	4.8	9.3	41.3	8.28
2	4.8	10.1	38.9	8.29
3	3.6	8.7	35.9	8.33
4	3.8	9.7	47.0	8.18
5	2.0	10.5	42.0	8.18
6	4.5	9.0	35.3	8.28
7	2.3	9.6	30.2	8.32
8	3.0	11.4	33.0	8.31
9	6.3	13.7	56.5	8.34

5+	Simu	latio	nsE	Durg
	Sinu	Iauu	IISF	Tus

	NASDAQ:	SLP

pEC50

8.44

8.28

8.29

8.33

8.18

8.18

8.28

8.32

8.31

8.34

46.9

41.3

38.9

35.9

47.0

42.0

35.3

30.2

33.0

56.5

MCDA rank ADMET_Risk Clearance [L/h] Fup [%]

10.0

9.3

10.1

8.7

9.7

10.5

9.0

9.6

11.4

13.7

5.4

4.8

4.8

3.6

3.8

2.0

4.5

2.3

3.0

6.3

0

1

2

3

4

5

6

7

8

9

	NA	SDA	AQ:	SLI
--	----	-----	-----	-----

MCDA rank	ADMET_Risk	Clearance [L/h]	Fup [%]	pEC50
0	5.4	10.0	46.9	8.44
1	4.8	9.3	41.3	8.28
2	4.8	10.1	38.9	8.29
3	3.6	8.7	35.9	8.33
4	3.8	9.7	47.0	8.18
5	2.0	10.5	42.0	8.18
6	4.5	9.0	35.3	8.28
7	2.3	9.6	30.2	8.32
8	3.0	11.4	33.0	8.31
9	6.3	13.7	56.5	8.34

NASDAQ: SLP

MCDA rank	ADMET_Risk	Clearance [L/h]	Fup [%]	pEC50
0	5.4	10.0	46.9	8.44
1	4.8	9.3	41.3	8.28
2	4.8	10.1	38.9	8.29
3	3.6	8.7	35.9	8.33
4	3.8	9.7	47.0	8.18
5	2.0	10.5	42.0	8.18
6	4.5	9.0	35.3	8.28
7	2.3	9.6	30.2	8.32
8	3.0	11.4	33.0	8.31
9	6.3	13.7	56.5	8.34

CI	Cim	110	tio	ne	Dhuc
	3111	uid	LIU	115	FIUS

NASDAQ: SLP

pEC50

8.44

8.28

8.29

8.33

8.18

8.18

8.28

8.32

8.31

8.34

46.9

41.3

38.9

35.9

47.0

42.0

35.3

30.2

33.0

56.5

MCDA rank ADMET_Risk Clearance [L/h] Fup [%]

10.0

9.3

10.1

8.7

9.7

10.5

9.0

9.6

11.4

13.7

5.4

4.8

4.8

3.6

3.8

2.0

4.5

2.3

3.0

6.3

0

1

2

3

4

5

6

7

8

9

Conclusions

- Synthon/fragment space: convenient and lightweight.
- SynthonForgePlus:
 - ... Python-based,
 - ...Property/PK-oriented,
 - ...MPO,
 - ...MCDA-powered,
 - framework for chemical space exploration.
- Freedom Space 3.0 from Chemspace.
- RORγ use cases.

Don't search the haystack—build the needle.

Acknowledgments

- Colleagues from Simulations Plus:
 - Michael Lawless, David Miller, Vladimir Chupakhin, Jeremy Jones, Robert Frączkiewicz, Tom Sanderson, Viera Lukacova, John DiBella
- Chemspace LLC:
 - Olga Tarkhanova, Anna Kapeliukha, Diana Krasko
- Thank you for your attention!

