
 ABSTRACT

 

BACKGROUND: Accelerating clinical development of new compounds demands efficient systems for 
evaluation and interpretation of trial results. Systematizing trial evaluation methods yields efficiency and 
confidence in results. A simulation/estimation (S/E) platform was employed for definitive assessment of parasite 
models used for analysis of volunteer infection studies (VIS). Using rich data, parasite models were evaluated for 
identifiability and performance.  

METHODS: Simulated hourly parasite counts (mrgsolve; 500 replications) were analyzed (NONMEM 7.3; 
KIWI 2) with 4 structural models with various random effects (RE). Three empirical models (traditional first-order 
growth and drug effect [TFGDE], indirect response [IDR], and Gompertz [GOMP]) and a semi-mechanistic model 
(Gordi) were evaluated. Recrudescence, limit of quantification (LOQ of 10 or 111 parasites/mL), growth phase, and 
drug effects were considered.  

RESULTS: The TFGDE with RE on 2 and 5 parameters and Gordi with RE on 3 parameters were most 
stable with respect to identifiability and precision of parameter estimates. For TFGDE and Gordi models with 
LOQ = 10, drug effect was well estimated with EC50 (0.0123 mcg/mL; 95% confidence 
interval [CI] = 0.0122 - 0.0123) and Kpinj (0.329 mcg/mL x h; 95% CI = 0.328 - 0.331), respectively.  

CONCLUSION: Traditional and Gordi models perform well. Further work on LOQ and limited data 
scenarios is needed. The S/E platform allows assessment of relative model performance to guide efficient model 
selection and refinement.  

 INTRODUCTION

 

 The parasite lifecycle (Fig. 1) is complex; parasites traverse through the liver and undergo a cyclic asexual 
replication in the blood. Parasitized erythrocytes are cleared 
from the human host through various host defense 
mechanisms [1].  

 VIS using the induced blood stage malaria (IBSM) model are 
a valuable system for defining the key pharmacokinetic/
pharmacodynamic (PK/PD) relationships for dose selection in 
antimalarial drug development [2].  

 Healthy volunteers are inoculated with a known quantity of 
Plasmodium-infected red cells. Parasitemia is measured by 
quantitative polymerase chain reaction (qPCR) until a 
prespecified treatment threshold is reached and the test drug 
is administered. Parasite and drug concentrations are 
measured throughout treatment.  

 PK/PD modeling of data generated from IBSM studies 
provides the ability to predict and simulate drug 
concentrations and parasite counts to support clinical trial 
simulations and model-driven decision-making in antimalarial 
drug development.  

RATIONALE 

 

 As drug discovery methods become more advanced and target biomarkers on the parasite become more readily 
available, increasingly more mechanistic pharmacodynamic (PD) models can be used to model the IBSM data.  

 Currently, a linear growth function is typically used to characterize net parasite growth and a Hill function is used 
to represent drug-induced parasite death [3,4,5]. However, alternative PD models have been fit to IBSM data 
(unpublished work).  

 The use of non-identifiable models may cause numerical problems during estimation and yield unreliable, 
imprecise parameter estimates that are not informative for decision-making.  

 Prior to this work, a formal evaluation of the pharmacostatistical models combining data prior to and post 
antimalarial dose in IBSM studies had not been published.  

GOALS and OBJECTIVES

 

 The goals of this analysis were to  

1. understand the potential for bias of parameter estimates, and issues with parameter identifiability and 
precision, for each tested model and  

2. provide a scientific basis for model selection and refinement for analysis of IBSM study data.  

 The objectives of this work were to:  

1. simulate rich datasets from each of the 4 empirical candidate models and  

2. for each of the models, estimate the population PD parameters and their variability to give insight into model 
identifiability.  

 METHODS

 

Models 

 Four models were evaluated. Three of the 4 models are variations on the traditional maximum pharmacologic 
effect (Emax) model; the fourth (Gordi, et. al) was a semi-mechanistic model.  

 The Emax model with linear growth (Eq. 1) has been widely used in the literature to represent IBSM data and 
assumes a net growth of parasite, collapsing the growth rate and natural death rate into 1 parameter, Knet [3,4,5].  

 

 

Traditional Model (TFGDE) 
Equation 1 
 Where:  
 P is parasite count;  
 Kd is maximum first-order rate constant for drug-induced death of parasite (1/h);  
 γ is Hill coefficient;  
 EC50 is drug concentration at which 50% of maximum rate of parasite death occurs  
               (µg/mL); and  
 Knet is first-order rate constant for net growth of parasite (1/h).  

 

 

Indirect Response Component Model (IDR) 

 In an effort to conceptually separate the natural growth and death rates of 
parasites, the traditional model shown in Eq. 1 was adapted to include an 
indirect response component, as shown in Eq. 2 (the “IDR” model).  

 This model has a first-order input of parasite growth and drug effect 
stimulates the loss of parasites from the system [6].  

 Maximum drug effect is a fold increase above natural parasite death through 
the Emax parameter.  

Equation 2 
 Where:  
 P is parasite count;  
 γ is Hill coefficient;  
 Kg is first-order rate constant for growth of parasite (1/h);  
 Kd is first-order rate constant for natural death of parasite (1/h);  
 EC50 is drug concentration at which 50% of maximum rate of parasite death occurs (µg/mL); and  
 Emax is fold increase of drug-induced death above Kd (unitless).  

 

Gompertz Model (GOMP) 

 Parasite growth was modeled using a Gompertz-type function in an 
effort to more accurately describe the nature of parasite growth.  

 The growth of parasite is stunted by a deceleration value, Ψ, and limited 
by a maximum parasite count (α), and drug-induced death is 
represented with a Hill function (Eq. 3). Kd refers to the drug-induced 
death of parasite.  

Equation 3 
 Where:  
 P is parasite count;  
 Kg is maximum first-order rate constant for net growth of parasite  
           (1/h);  
 Kd is maximum first-order rate constant for drug-induced death of parasite (1/h);  
 γ is Hill coefficient;  
 EC50 is drug conc. at which 50% of maximum rate of parasite death occurs (μg/mL);  
 α is asymptote for maximum parasite growth (parasite/mL); and  
 Ψ is deceleration value.  

 

Gordi Model (GORDI) 

 A semi-mechanistic model (Eq. 4), the Gordi model differs 
from the other models evaluated in that this model includes 
4 parasite compartments, representative of various stages of 
the asexual parasite lifecycle.  

 The observed parasite count is a summation of 
3 compartments (vpara = P1 + P3 + P4), and compartment P2 
represents parasites that are sequestered or “invisible” from 
analytical detection [2].  

 
Equation 4 

 

 
 Where:  
  P1 is trophozoite (sensitive parasites);  
 P2 is sequestered schizont (sensitive parasites);  

 P3 is ring (insensitive parasites);  

 P4 is injured parasites;  

 vpara is P1 + P3 + P4; estimates the individual parasite count (dv);  

 RF is trophozoite to schizont replication factor;  

 Kpar is transit rate parameter from trophozoite to schizont to ring (h);  

 Kr is transit rate parameter from ring to trophozoite (h);  

 Kpinj is injury of trophozoite and schizont (µg/mL x h);  

 Kinj is first-order removal of parasites by spleen (1/h).  
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Software 

Simulations used the R package mrgsolve Version 0.8.10, R 3.4.2, and R Studio 1.1.383. PK/PD model estimation 

was performed in NONMEM Version 7.3.0, using KIWI
TM

 Version 2.  

Simulation and Estimation Methodology 

 The overall workflow for the simulation 
and estimation process is shown in Fig. 2. 
The simulation study design and dosing 
regimens, hypothetical bioanalytical 
techniques, and lower limits of 
quantitation (LLOQs) are shown 
in Table 1a and Table 1b.  

 The PK model was adapted from 
literature [7]. Hourly PK samples 
were simulated from 168 to 
672 hours after inoculation.  

 Simulation parameter values used for all models allowed for a similar range of parasites 
(1 x 10

3
 - 1 x 10

5
 parasites/mL) at Day 7 (168 hours) just prior to study drug administration [8].  

 Cured was defined as parasite counts at or below 0.003 parasites/mL (threshold for cure).  

 The time of rescue medication administration was imputed:  

 Evaluated samples every 8 hours after > 24 hours postdose.  

 Rescue medication is typically administered in an IBSM study when 
parasite counts return to ≥ 1 x 10

5
 after an initial response (decrease 

in parasite counts) or in absence of a response 36 hours after 
inoculation.  

 The time at which a decrease in parasite count was determined. Then 
a search for the first parasite count ≥ 1 x 10

5
 was performed. The time 

of this count was the imputed time of rescue medication.  

 If a decrease in parasite count was not found after 24 hours postdose, 
the imputed time of rescue medication was 36 hours postdose.  

 All samples after the imputed time of rescue medication were deleted.  

 For each PD model evaluated, 2 sets of estimations occurred; 1 set 
where the LLOQ was 10 parasites/mL and 1 set with the LLOQ as 
111 parasites/mL. This resulted in 2 estimation sets per candidate 
model.  

 NONMEM estimation: Laplacian method and the M3 method for 
samples below the LLOQ.  

 For each candidate model, various combinations of interindividual 
variability (IIV) in parameters were tested, as shown in Fig. 2. These 
combinations of IIV produce the number of models evaluate for a 
design.  

 Evaluation of each model included a consideration of the minimum value of the objective function, successful 
covariance, parameter estimation (within 10% of the true value), and precision of parameter estimates  
(%RSE < 5).  

 For models with successful covariance, goodness-of-fit plots were evaluated.  

 From these criteria, each PD model was evaluated and the best model using each LLOQ value was selected 
(red boxes in Fig. 2).  

 RESULTS

 
Each of the 4 candidate models were able to fit the data, with varying degrees of success. Table 2 shows the 
number of models (varying by IIV structure) that had a successful covariance for each candidate model structure.  

Traditional Model 
 For both LLOQ datasets  

 Successful covariance: 5 of the 7 models.  

 Reasonable parameter estimates and 
precision in 2 of the 5 successful covariance 
models. 

 LLOQ = 10: the model with IIV on the 
inoculum value and Kd was selected as the best model.  

■ PD parameter estimates and their CIs close to the true values of the simulations.  

 LLOQ = 111: the model with IIV on all parameters was selected as the best model.  

■ PD parameter estimates and their CIs were very close to the true values.  

 The model for the dataset with LLOQ = 111 parasites/mL yielded more accurate parameter estimates for Knet 
and Kd, as compared to the true values of the data.  

 The model for the dataset with LLOQ = 10 parasites/mL yielded a better estimate of EC50.  
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Indirect Response Component Model 
 For both LLOQ datasets  

 Successful covariance: 1 of the 8 models.  

 Both models had high %RSE on EC50.  

 Dataset with LLOQ = 10: model with IIV on all parameters was successful; good estimates of Kg, Kd, and Emax.  

 Dataset with LLOQ = 111: model with IIV on EC50, Emax, and Kd was successful; accurate estimate of EC50.  

 Though over-parameterized, this model suggests a basis for discussion of separation of natural killing versus 
drug effect.  

Gompertz Model 
 Dataset with LLOQ = 10  

 Successful covariance: 2 of the 9 models.  

 Model with IIV on both EC50 and Kd had a good estimate of Kg, Ψ, and Kd and was chosen as the final model 
from this group.  

 Dataset with LLOQ = 111 parasites/mL  

 Successful covariance: 4 of the 8 models.  

 Model with IIV on the inoculum, EC50 and Kd was the best model, but IIV EC50 estimate was (1310 %CV). Other 
fixed effect PD parameters were within 10% of the true value from the simulation.  

Gordi Model 
 Dataset with LLOQ = 10 parasites/mL  

 Successful covariance: 9 of the 12 models.  

 The model with IIV on Kinj, MTT, and the inoculum value had parameter estimates closest to the true values 
and was reasonably well estimated.  

 Dataset with LLOQ = 111 parasites/mL  

 Successful covariance: 9 of the 12 models.  

 The model with IIV on Kinj, MTT, and the inoculum value was selected as the best model.  

 A comparison between the 2 estimation sets showed the estimation, which used an LLOQ of 10 parasites/mL, 
yielded parameter estimates of MTT and Kd closer to the true values.  

 SUMMARY and NEXT STEPS

 

 A method to evaluate the identifiability of PD models used to characterize IBSM data was tested.  

 The Gordi and the traditional model were the more identifiable models. The modified traditional models (that is, 
the IDR model and the Gompertz model) were not identifiable, but serve for discussion of modeling approaches.  

 The results of the Gordi model simulation-estimation demonstrate that the VIS data can support the identifiability 
of a semi-mechanistic model.  

 The traditional model is often used because of relative simplicity and the inclusion of a familiar potency (EC50) 
parameter which can be translated throughout phases of development and comparisons between agents.  

 The cyclical nature of parasite growth in IBSM studies has been well documented in the literature and is 
observable across subjects in the IBSM study design due to the synchronous administration of the parasite 
challenge across subjects. Cyclical data simulated from a sine function could be fit with both a linear growth 
model and a sine wave function; to facilitate the understanding of the effect of the estimation of PD parameters 
from collapsing the sine wave growth to a linear function.  

 Similar to the workflow used in this analysis (Fig. 1), subsequent analyses could simulate datasets and 
investigate the effect of the proportion of patients who recrudesce on model identifiability.  

 The rules which are used to censor data after rescue medication administration can be altered such that varying 
protocol designs can be evaluated for the ability of the data to inform the models.  

 More mechanistic models should be pursued as study designs evolve, as biomarkers for stages of parasite 
lifecycles are identified and made available, and as combination treatments are explored.  
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Figure 1. Parasite lifecycle 

Note: Mean transit time (MTT) of parasite was estimated in lieu of Kpar and Kr (h). 

Where: Kpar = 2/MTT and Kr = 1/(48 - MTT) 

Figure 2. Workflow of Simulation-Estimation for 
IBSM Data Model Identifiability 

Table 1a. Simulation Study Design and Dosing Regimens 

Study Title Virtual Patients Dosing Regimen Sampling (PK/PD) 

Simulation Study 250 Oral administration of 800 mg of 

quinine every 8 hours for 7 days, 

beginning 168 hours after  

inoculation 

Every hour from 168 to 

672 hours after  

inoculation 

Table 1b. Simulation Study Bioanalytical Techniques and Lower Limit of Quantitation 

Study 

Pharmacokinetic Pharmacodynamic 

Endpoint and LLOQ Assay / Method Endpoint and LLOQ Assay / Method 

Simulation Study Quinine plasma  

concentration;  

1 μg/mL 

Liquid  

chromatography with 

fluorometric detection 

Total parasite;  

111 parasites/mL and 

10 parasites/mL 

qPCR 18s 

Table 2. Number of Models With Successful Covariance Step Completion,  
Stratified by the Lower Limit of Quantitation Value Used in Estimation 

 Traditional IDR Gompertz Gordi 

LLOQ value used in  

estimation  

(parasites/mL) 

10 111 10 111 10 111 10 111 

Number of modelsa with 

successful covariance 

5/7 5/7 1/8 1/8 2/9 4/9 9/12 9/12 

a Within a model type, the models differed in the number and location of random effects terms. 


