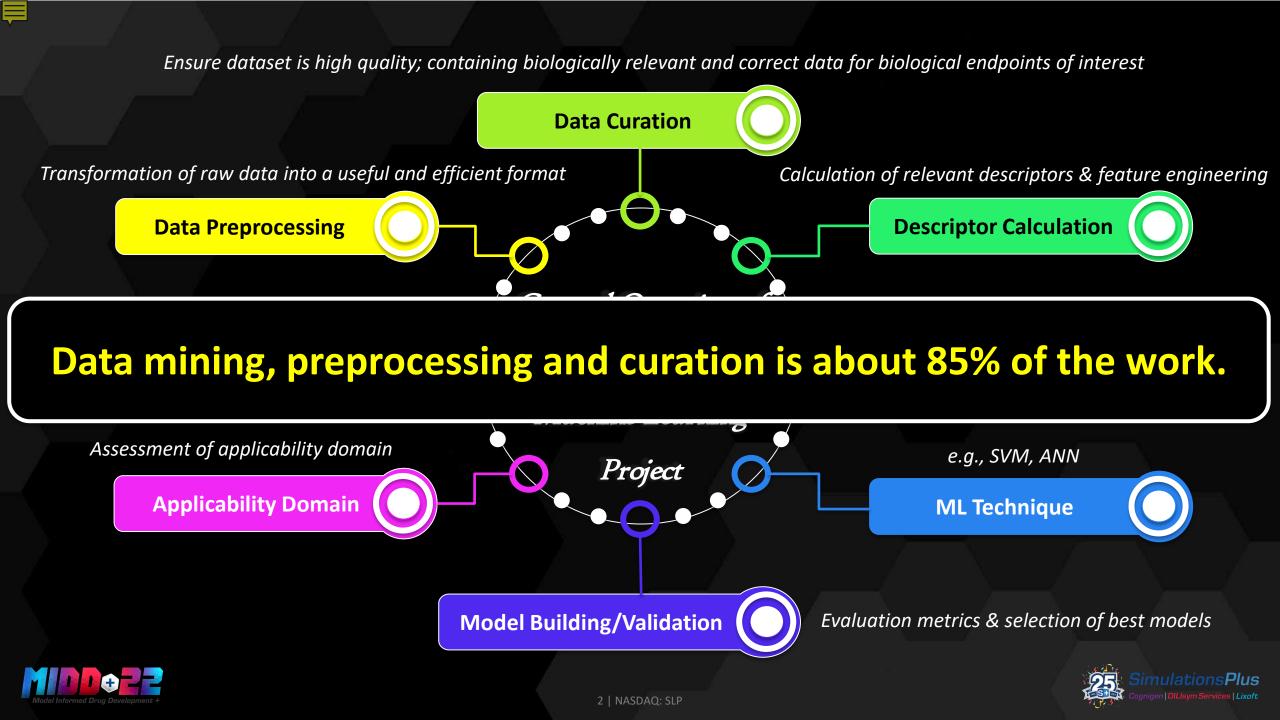
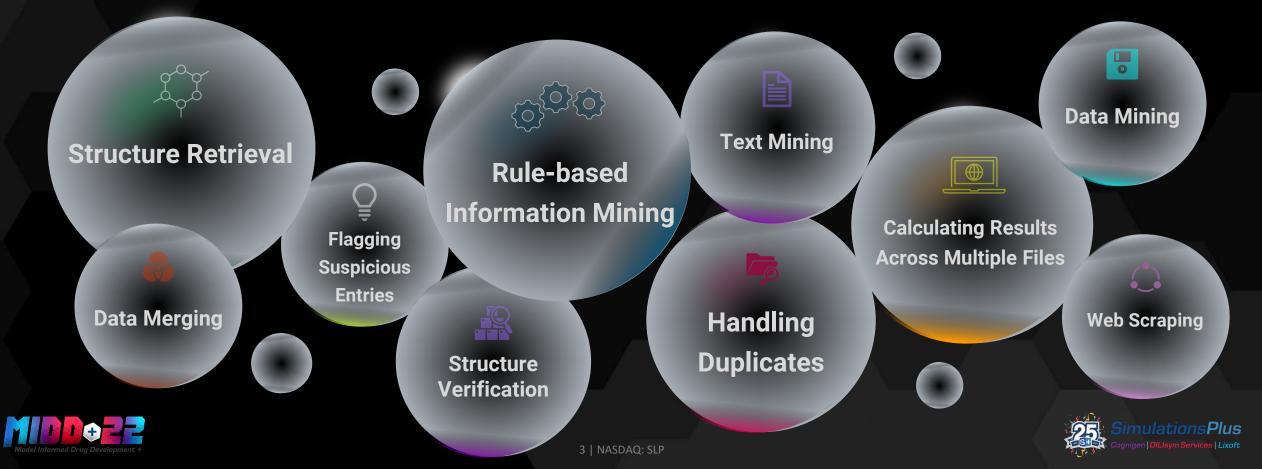


Model Informed Drug Development

How We Leverage Automation for Data Mining, Preprocessing & Curation


Phyo Phyo Kyaw Zin

Please note: this presentation, including questions from the audience, is being recorded and may be made available.



When Do We Use Automation?

- When there are tedious, repetitive, exhausting & time-consuming tasks for humans
- When we can improve quality of work, efficiency, and reduce human error
- When there is a clear, well-defined set of rules to address common problems in the pipeline

Example Cases of Automation in CYP450 site of metabolism (SoM) Project

Web Scraping for Drugs

- Extraction of drug names with possible CYP information from FDA website in an efficient & fast way
- Scan documents for CYP information to assess priority

Structural Extraction & Verification

- Retrieval of chemical structures based on names from multiple databases using APIs
- Structural preprocessing & comparison of structures

Merging Datasets

Merging different datasets based on SMILES, handling conflicted entries, removing duplicates, & flagging suspicious CYP enzymes that should be inspected manually

	C	DUTPUT	1				<u> </u>			
	1	Drug Name	Active Ingredient	Approval Date	FDA-approved use	links	keywords_	detected	priority	
1	16	Avycaz	ceftazidime-aviba	2/25/2015	To treat adults wit	http://www.acces	сур, 1а2, 2а	6, 2b6, 2c8, 2c9, 2c19,	high	
1	17	Axumin	fluciclovine F 18	5/27/2016	A new diagnostic i	http://www.acces	sdata.fda.go	v/scripts/cder/daf/inde	low	
1	8	Ayvakit	avapritinib	1/9/2020	To treat adults wit	http://www.acces	cyp, 1a2, 2t	o6, 2c8, 2c9, 2c19, 2d6,	high	
1	9	Balversa	erdafitinib	4/12/2019	To treat adult pati	http://www.acces	сур, 2с9, За	4	high	
Ż	20	Barhemsys	amisulpride	2/26/2020	To help prevent na	http://www.acces	сур, 1а2, 2а	6, 2b6, 2c8, 2c9, 2c19,	high	าล
ć	21	Baxdela	delafloxacin	6/19/2017	To treat patients v	http://www.acces	sdata.fda.go	v/scripts/cder/daf/inde	low	10
Ż	22	benznidazole	benznidazole	8/29/2017	To treat children a	http://www.acces	cyp, 1a2, 2k	o6, 3a4	high	
2	23	Веvухха	betrixaban	6/23/2017	For the prophylaxi	http://www.acces	cyp, 1a2, 2k	o6, 2c9, 2c19, 2d6, 3a4	high	
Z	24	Biktarvy	bictegravir, embite	2/7/2018	To treat infection	http://www.acces	сур		high	
ć	25	Braftovi	encorafenib	6/27/2018	To treat unresecta	http://www.acces	cyp, 1a2, 2k	o6, 2c8, 2c9, 2c19, 2d6,	high	
	6	Bridian	curammaday	12/15/2015	To reverse effects	http://www.acces	edata fda oo	v/corinte/cdar/daf/inda	low	

This automation pipeline efficiently mines hundreds of drugs and prioritizes them for SoM project in minutes.

1	34	Cerianna	fluoroestradiol F1	5/20/2020	Diagnostic imagin	http://www.accessdata.fda.gov/scripts/cder/daf/inde	low	
14	35	Cholbam	cholic acid	3/17/2015	To treat pediatric	http://www.acces cyp	high	
1	36	Copiktra	duvelisib	9/24/2018	To treat relapsed of	http://www.acces cyp, 3a4	high	Text Scan
4	37	Corlanor	ivabradine	4/15/2015	To reduce hospita	http://www.acces cyp, 3a4	high	
1	38	Cotellic	cobimetinib	11/10/2015	To be used in com	http://www.acces cyp, 1a2, 2b6, 2c8, 2c9, 2c19, 2d6,	high	
	39	Cresembacapsulei	isavuconazonium	3/6/2015	To treat adults wit	http://www.accessdata.fda.gov/scripts/cder/daf/inde	low	
	40	Daklinza	daclatasvir	7/24/2015	To treat chronic h	http://www.acces cyp, 1a2, 2b6, 2c8, 2c9, 2c19, 2d6,	high	Assess
	41	Daurismo	glasdegib	11/21/2018	To treat newly-dia	http://www.acces cyp, 1a2, 2b6, 2c8, 2c9, 2c19, 2d6,	high	Priority
	42	Dayvigo	lemborexant	12/20/2019	To treat insomnia	http://www.acces cyp, 1a2, 2a6, 2b6, 2c8, 2c9, 2c19,	high	
Mode	43 Informed	Defitelio Drug Development +	defibrotide sodiur Showing 1 to 1 of 1 entries	3/30/2016	To treat adults a	httn://www.acces.cvn 1a2 2h6 2c8 2c9 2c19 2d6	high	Cognigen DILlsym Services Lixoft

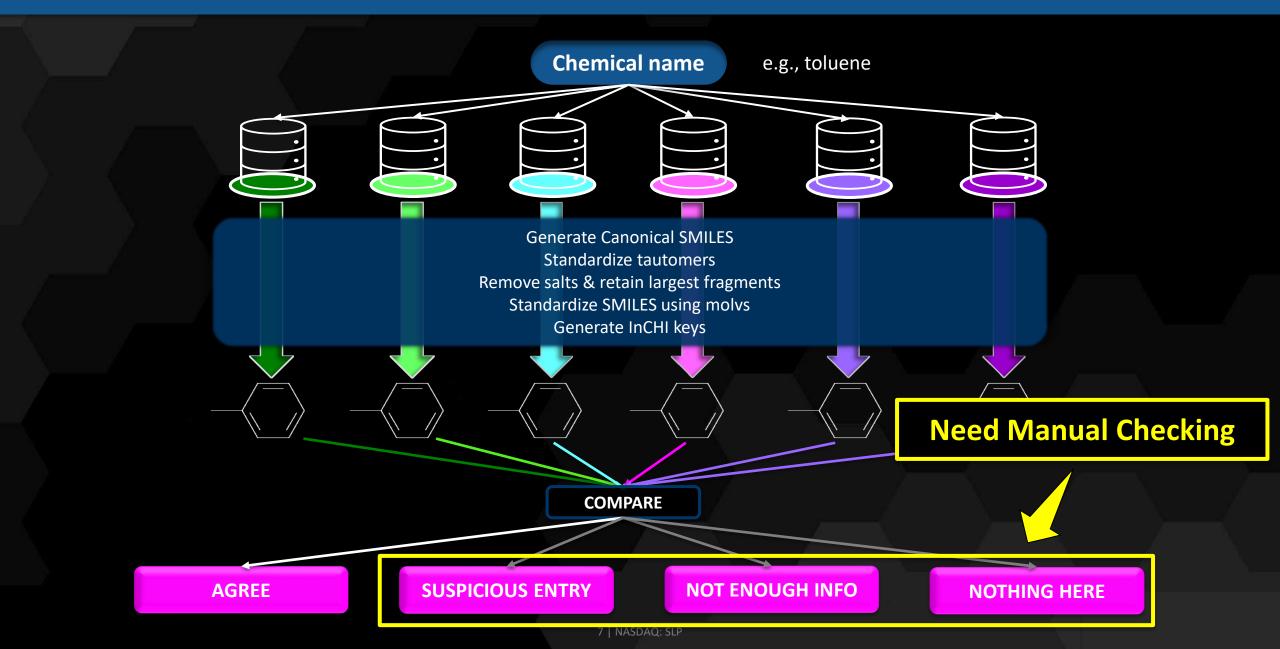
Example Cases of Automation in CYP450 site of metabolism (SoM) Project

Web Scraping for Drugs

- Extraction of drug names with possible CYP information from FDA website in an efficient & fast way
- Scan documents for CYP information to assess priority

Structural Extraction & Verification

- Retrieval of chemical structures based on names from multiple databases using APIs
- Structural preprocessing & comparison of structures


Merging Datasets

Merging different datasets based on SMILES, handling conflicted entries, removing duplicates, & flagging suspicious CYP enzymes that should be inspected manually

Automation for Structural Retrieval & Verification

1	Identifier	-	ChEMB 🔻	ChEME	-	ChEMB	-	NIH_C	1 -	NIH_	Cl 🔻	CIR	_SN ₊	1 C	IR_sm	•	PubCh 🔽	Pul	bCh 🔻	PubCh	•	wiki_Sl 🔻	wi	ci_si ▼	Structu	-	сомм 🖛	synony	- 5	SYNON "	r	
2	Distigmine		CHEMBL1	ICN(CC	ccc	CN(CCC	CCC	[Br-].[Br-]	CN(C	cccc	[Br-].[Br	-] C	N(CCC	CC	3116	5 C[N	V+]1=C(CN(CC	ссс	[Br-].[Br-] CN	(CCCCC	AGREE		см(ссссо	Distigm	in(F	vubmed	ID: 31	116,
3	Glycopyrrol	at€	CHEMBL1	C[N+]1	(C)	C[N+]1	(C)C	CC(O	C(=C)c(o)(c2c	(Br-].C[N	I+C	[N+]1((C)	11693	3 C[N	V+]1(CC	C[N+]1	L(C)	C[N+]1(C	CC[N	V+]1(C)	AGREE		C[N+]1(C)	Lonhala	n m F	vubmed	ID: 1	1693
4	Vecuronium	n B	CHEMBL1	CC(=0))0[(CC(=O)	OC1	LCC2C	CC30	c(cco	C4(C)	[Br-].CC((= C	C(=O)	ос	39764	CC	(=0)0[CC(=O)OC	CC(=O)O[(CC	(=0)00	AGREE		CC(=0)OC	Pancuro	oni F	vubmed	ID: 39	9764
5	Prifinium br	ror	CHEMBL1	CC[N+]]1(0	CC[N+]	1(C	c)ccc	(=C(c2ccc	cc2)c	[Br-].CC[[NC	C[N+]:	1(C	20749	O CC	[N+]1(C	CC[N+]1(C	C)CCC(=C	(c2c	cccc2)c	AGREE		CC[N+]1(0	Prifiniu	m F	vubmed	ID: 20	0749
6	Galanthami	ne	CHEMBL6	COc1co	cc2c	COc1co	c2c	[Br-].C	Oc1	COci	Lccc2o	[Br-].CO	c1 C	Oc1cc	c2c	9651	CN	1CC[C@	COc1c	cc2c	O(c2c1O[cco	c1ccc2d	AGREE		COc1ccc2d	Galsya >	xI, F	vubmed	ID: 9	651,

Thousands of structures are extracted and verified using this automation pipeline.

12	BETAINE HYDR	CHEMBL12	C[N+](C)((C[N+	F](C)(C)CC(=0)C)	[CI-].C[N-	+C[N+](C)((11545	C[N+](C)((C[N+](C)((C[N+](C)((C[N+](C)(SUSPICIO	JS ENTRY	Acidol pe	Pubmed ID:	11545
13	Thiamphenico	CHEMBL1	CS(=O)(=C CS(=	:0)(=0))c1ccc(C((D)C(COC(=	[CI-].C[S]	(CS(=O)(=C	115817	CS(=O)(=0	CS(=O)(=0	NCCCCC(I	V)C(=O)OZ	AGREE	CS(=O)(=C	Thiamphe	Pubmed ID:	11581
14	MITOGUAZON	CHEMBL4	CC(C=N	NCCC(C	=NN=	[CI].CC(\0	CC(C=NN	[CI].CC(\(CC(C=NN=	5351154	C/C(=N\N	CC(C=NN=	C\C(\C=N	CC(C=NN=	AGREE	CC(C=NN=	C(N)N)=N	Pubmed ID:	53511
15	PIRLINDOLE	CHEMBL1	CS(=O)(=C Cc1c	cc2c(c	[Cl-].Cc1c	Cc1ccc2c([Cl-].Cc1o	Cc1ccc2c(d	68802	CC1=CC2=	Cc1ccc2c(CC1=CC2=	Cc1ccc2c(AGREE	Cc1ccc2c(c	1)c1c3n2C	Pubmed ID:	68802
16	ETHYLNOREPI	CHEMBL13	CCC(N)	c(ccc((N)C(O)c1ccc(O)	c(O)c1	[CI-].CCC	CCC([NH3	18900	CCC(C(C1	CCC(N)C	Clc1ccc3n	Clc1ccc2n	SUSPICIO	JS ENTRY	Bronkeph	Pubmed ID:	18900
17	Milnacipran	CHEMBL2	CCN(CC)C CCN	(CC)C	[CI-].CCN	(CCN(CC)C	[CI-].CCN	(CCN(CC)C	65833	CCN(CC)	CCN(CC)C	O=C(N(CC	CCN(CC)C	AGREE	CCN(CC)C	Midalcipra	Pubmed ID:	65833
18	DORZOLAMIDE	CHEMBL12	CCN[C@	PH CCN	C1CC(0	C)S(=O)(=	O)c2sc(S(N	[CI-].CCN	CCNC1CC	6918132	CCN[C@F	CCNC1CC	CCNC1CC	CCNC1CC	AGREE	CCNC1CC(Trusopt, C	Pubmed ID:	69181
19	METHYLDOPA	CHEMBL12	CCOC(=	o) cco	C(=O)C	C(C)(N)Cc	1ccc(0)c(0	[CI-].CCO	(CCOC(=O)	17276	CCOC(=O) CCOC(=O)	C[C@](CC	CC(N)(Cc1	SUSPICIO	JS ENTRY	Methyldo	Pubmed ID:	17276
20	DEMECLOCYCL	CHEMBL12	CN(C)[C	CO CN(0	C)C1C(:	=0)C(C(N)=O)C(=O)	[CI-].CN(CN(C)C1C	54686764	CN(C)[C@	CN(C)C1C	NC(=0)C1	CN(C)C1C	AGREE	CN(C)C1C	Declomyc	Pubmed ID:	54686
21	LYMECYCLINE	CHEMBL2:	CN(C)[C	CO CN(0	C)C1C([CI-].CN(0	CN(C)C1C	[CI-].CN(CN(C)C1C	54707177	C[C@@]1	CN(C)C1C	C[C@@]1	CN(C)C1C	SUSPICIO	JS ENTRY	Tetralysal	Pubmed ID:	54707

It improves data quality & is an integral part of our data curation pipeline.

											-						
27	AMINEPTINE	CHEMBL41O=C(O)CC	O=C(O)CC [CI-].OC(=	O=C(O)CC	[CI-].OC(=	O=C(O)CC	34870	C1CC2=CC	O=C(O)CC	0=C(CCC0	0=C(O)C	SUSPICIO	US ENTRY	Aminepti	ir Pubmed	ID: 34870
28	Gadobutrol 🛛	CHEMBL2218860	[Ga+3].OC	O=C([O-])	[Ga+3].OC	O=C([O-])	6102852	C1CN(CCM	O=C([O-])	C1CN(CCI	O=C([O-])	AGREE	O=C([O-]	Gadavist,	Pubmed	ID: 61028
29 (Gadoteridol	CHEMBL1200593	[Gd+3].CC	CC(O)CN1	[Gd+3].CC	CC(O)CN1	60714	CC(CN1CC	CC(O)CN1	[Gd+3].[O	CC(O)CN1	AGREE	CC(O)CN	L SQ 32,692	2, Pubmed	ID: 60714
30	Gadopentetat 🕻	CHEMBL1200431	[Gd+3].OC	O=C([O-])	[Gd+3].OC	O=C([O-])	6857474	C(CN(CC(O=C([O-])	[Gd+3].[O	O=C([O-])	AGREE	O=C([O-]	SHL-451A	, Pubmed	ID: 68574
31	PIRIFIBRATE	CHEMBL15 CC(C)(Oc1	CC(C)(Oc1[H+].[Cl-].	CC(C)(Oc1	[H+].[Cl-].	CC(C)(Oc1	68720	CC(C)(C(=	CC(C)(Oc1	.ccc(Cl)cc1)C(=O)OCc	AGREE	CC(C)(Oc	1 Pirifibrat	e Pubmed	ID: 68720
32	CLORPRENALI	CHEMBL39CC(C)NCC	CC(C)NCC(C	D)c1ccccc1	lCl	[H+].[Cl-].	CC(C)NCC	23360	CC(C)NCC	CC(C)NCC	(O)c1ccccc	1Cl	AGREE	CC(C)NCC	20025, Cl	o Pubmed	ID: 23360
33	Alprenolol 🛛	CHEMBL12 C=CCc1ccc	C=CCc1ccc[H+].[Cl-].	C=CCc1ccc	[H+].[Cl-].	C=CCc1ccc	2119	CC(C)NCC	C=CCc1ccc	O(c1ccccc	C=CCc1co	AGREE	C=CCc1cc	Alprenol	o Pubmed	ID: 2119,
34 (GEPIRONE HYE	CHEMBL28 CC1(C)CC(CC1(C)CC(=	O)N(CCC	CN2CCN(c3	[H+].[Cl-].	CC1(C)CC(55190	CC1(CC(=	CC1(C)CC	O=C1N(C(CC1(C)CC	AGREE	CC1(C)CC	(Ariza, Ge	p Pubmed	ID: 55190
35	Nefazodone	CHEMBL62 CCc1nn(C(CCc1nn(C([H+].[Cl-].	CCc1nn(C	[H+].[Cl-].	CCc1nn(CC	4449	CCC1=NN	CCc1nn(C	Clc4cccc(N	CCc1nn(C	AGREE	CCc1nn(C	Nefazodo	Pubmed	ID: 4449,

Example Cases of Automation in CYP450 site of metabolism (SoM) Project

Web Scraping for Drugs

- Extraction of drug names with possible CYP information from FDA website in an efficient & fast way
- Scan documents for CYP information to assess priority

Structural Extraction & Verification

- Retrieval of chemical structures based on names from multiple databases using APIs
- Structural preprocessing & comparison of structures

Merging Datasets

Merging different datasets based on SMILES, handling conflicted entries, removing duplicates, & flagging suspicious CYP enzymes that should be inspected manually

Automation in Merging Datasets

	$\langle \rangle$	ח	Γ ₿2	ĥ	3								
	DB	Identifier			ZA6_SoM	286_SoM		2C8_SoM	2C9_SoM	2D6_SoM			Alternate_Na
	Hem	albendazole	C(=0)(OC)N	12			15				15	12	
	thom Sond		C(=0)(0C)N O(c1c(0C)cc(°5, 21°	15	*5, 21*	"5, 21"	"15, 17, 5, 21"		12 *15, 17, 5, 21, 12*	
	rton Språl ODD	Trimethop		*15., 17., 5., 21*	12	°5, 21° 12	'5, 21'	°5, 21° °11, 12°	*5, 21*			*15, 17, 5, 21, 12*	SLP_MET_769
1 2 3	420m Språ. Språ 200	Trimethop	O(c1c(OC)cc(*15, 17, 5, 21* *11, 12*	12		'5, 21'	*11, 12*	"5, 21" "13, 19, 20"	21"		*15, 17, 5, 21, 12* *11, 12*	
	420m 537 ch. QO 2	Trimethop CARBAM Tinoleic_acid	O(c1c(OC)cc[C(=O)(N1c2c	"15., 17., 5., 21" "11, 12" "13, 19, 20"	21	12	*5, 21* 12	*11, 12* *13, 19, 20* *9, 12, 13, 14, 15, 16,	*13, 19, 20* *9, 12, 13, 14, 15, 16,	21" 12 21	*11, 12*	*15, 17, 5, 21, 12* *11, 12* *13, 19, 20*	SLP_MET_769 SLP_MET_1600 SLP_MET_1436
1 2 3 4		Trimethop CARBAM linoleic_acid arachidoni	O(c1c(OC)cc(C(=O)(N1c2c C(=O)(O)CCC	*15,, 17,, 5,, 21* *11, 12* *13, 19, 20* *17, 16, 14, 13, 20, 21, 22, 10,	21	12	"5, 21" 12 "13, 19, 20" "13, 14, 15, 16, 17, 18,	*11, 12* *13, 19, 20* *9, 12, 13, 14, 15, 16,	*13, 19, 20* *9, 12, 13, 14, 15, 16,	21" 12 21	"11, 12" "19, 20"	"15, 17, 5, 21, 12" "11, 12" "13, 19, 20" "9, 12, 14, 15, 18, 19, 20, 21, 22	SLP_MET_769 SLP_MET_1600 SLP_MET_1436
1 2 3 4 5 6 7		Trimethop CARBAM linoleic_acid arachidoni	O(c1c(OC)cc(C(=0)(N1c2c C(=0)(O)CCC C(=0)(O)CCC	*15, 17, 5, 21* *11, 12* *13, 19, 20* *17, 16, 14, 13, 20, 21, 22, 10, 20	21	12 *21, 17, 16*	"5, 21" 12 "13, 19, 20" "13, 14, 15, 16, 17, 18, 19, 20, 21,	*11, 12* *13, 19, 20* *9, 12, 13, 14, 15, 16,	"13, 19, 20" "9, 12, 13, 14, 15, 16, 17, 18, 19,	21" 12 21	"11, 12" "19, 20"	"15, 17, 5, 21, 12" "11, 12" "13, 19, 20" "9, 12, 14, 15, 18, 19, 20, 21, 22	SLP_MET_769 SLP_MET_1600 SLP_MET_1436

Structure	Identifier	Canonical S	1A2_SoM	2A6_SoM	2B6_SoM	2C19_SoM	2C8_SoM	2C9_SoM	2D6_SoM	2E1_SoM	3A4_SoM	Alternate_Na
₩ Ţ Ţ Ţ Ţ Ţ Ţ Ţ	albendazole	C(=O)(OC)N	12			15				15	12	
NH ₂ N N NH ₂	Trimethop	O(c1c(OC)cc("15,, 17,, 5,, 21"		"5, 21"	"5, 21"	"5, 21"	"5, 21"	"15, 17, 5, 21"		"15, 17, 5, 21, 12"	
	CARBAM	C(=O)(N1c2c	"11, 12"	12	12	12	"11, 12"		12	"11, 12"	"11, 12"	SLP_MET_769
CH CH	linoleic_acid	C(=O)(O)CCC	"13, 19, 20"			"13, 19, 20"	"13, 19, 20"	"13, 19, 20"		"19, 20"	"13, 19, 20"	SLP_MET_1600
OH Commentation	arachidoni	C(=O)(O)CCC	"17, 16, 14, 13, 20, 21, 22, 10,	21	"21, 17, 16"	"13, 14, 15, 16, 17, 18, 19, 20, 21,	14, 15, 16,	14, 15, 16,		21	"9, 12, 14, 15, 18, 19, 20, 21, 22	SLP_MET_1436
	fluoxetine	C(F)(F)(F)c1cc	20		20	"10, 20"		20	20		"20, 10"	SLP_MET_2246
	MDMA	c12c(OCO1)c	"13, 4"		13				"4, 13"		4	SLP_MET_2257
$\phi_{\rm crop}\phi^{\rm c}$	ebastine	C(=O)(c1ccc(15		"8, 15"	SLP_MET_2077

Automation in Merging Datasets

When handling duplicate structures ...

The tasks involved in the data-merging process are redundant, timeconsuming and highly susceptible to human mistakes.

Identifier	Canonical SMILES	1A2_SoM	2A6_SoM	2B6_SoM	2C19_SoM	2C8_SoM	2C9_SoM	2D6_SoM	2E1_SoM	3A4_SoM	Alternate Name	Reference	Dataset
Compound A	O=C1c2c(ncn2C) N(C(=O)N1CCCC C(O)C)C	7	7	7			35 34 7	7		7 29		10.1093/bioin formatics/btw 617	DB1
Identifier	Canonical SMILES	1A2_SoM	2A6_SoM	2B6_SoM	2C19_SoM	2C8_SoM	2C9_SoM	2D6_SoM	2E1_SoM	3A4_SoM	Alternate Name	Reference	Dataset

This automation pipeline merges multiple datasets in a few seconds while following consistent rules in the process.

C(O)C)C 35, 37 37 11 10.1073/pnas. 2C9_S	Compound A	O=C1c2c(ncn2C) N(C(=O)N1CCCC C(O)C)C	7	7, 8	1, 7			7, 29, 34, 35, 37	7		7, 29, 34, 37	Compound	617, 10.1073/pnas.	DB1, DB3	3A4 SoM
--	------------	--	---	------	------	--	--	----------------------	---	--	------------------	----------	-----------------------	----------	---------

Conclusion

- Three example use cases of automation in CYP450 site of metabolism (SoM) project were shown to highlight the efficiency, usefulness and importance of automation.
- Automation is often used in data-mining, preprocessing and curation.
 - To reduce tedious, repetitive, exhausting & time-consuming tasks for humans
 - To diminish human mistakes/manual errors
 - To enhance data quality
 - To improve efficiency by lowering time, cost and effort

(esp. when handling thousands/millions of data)

Acknowledgement

- Pankaj Daga •
- **Michael Lawless** \bullet
- **Bob Clark** ullet
- **David Miller** \bullet
- Marvin Waldman ullet
- **Robert Fraczkiewicz** ullet
- Viera Lukacova \bullet
- **Eric Jamois** ightarrow
- John Dibella igodol

phyophyo.zin@simulations-plus.com www.drzinph.com

13 | NASDAQ: SLP