

Pharmacometrics for inclusion & equity

EVALUATION OF THE DISSOLUTION BEHAVIOR OF ETODOLAC TABLETS USING A PHYSIOLOGICALLY BASED BIOPHARMACEUTICS MODELING (PBBM) APPROACH

Larissa Lopes Rodrigues Gomide¹, Marcelo Dutra Duque^{1,*}

¹Universidade Federal de São Paulo - UNIFESP, Institute of Environmental, Chemical and Pharmaceutical Sciences, Diadema, São Paulo, Brazil. *e-mail: marcelo.duque@unifesp.br

Introduction and Objective

Etodolac is a non-steroidal, anti-inflammatory, acidic molecule (pKa 4.65) with pH-dependent solubility and classified as a BCS class II drug ^[1]. Due to its low and pH-dependent solubility, the objective of this study was to evaluate the influence of different dissolution test conditions on its bioavailability results using a PBBM approach.

Table 1. Z-factor values obtained by fitting to each dissolution profile of Flancox 400 mg at pH 5.0, 6.0, 6.4, and 6.8.

B3

рН	<i>Z- factor</i> (mL/mg/s)	Solubility (mg/mL)
5.5	1.40 x 10 ⁻³	0.56
6.0	7.40 x 10 ⁻⁴	1.6

Methods

Experimental dissolution tests were carried out using the Reference Listed Drug (RLD) product in Brazil, Flancox[®] 400mg tablets (n = 3), using USP apparatus 2 (paddle) 50 rpm, and 1000 mL of 0.05M phosphate buffer (PB) solutions at pH 5.5, 6.0, 6.4, and 6.8 at 37°C.

The PBBM (Figure 1) was built and validated using GastroPlus® version 9.8.3 software. Different PK datasets were extracted from the literature as well the physicochemical/biopharmaceutical properties of the drug. The Cp-time curve of the RLD product in USA, Lodine® 400 mg tablets ^[2], was used for comparison purposes.

6.4	3.20 x 10 ⁻⁴	3.9
6.8	1.49 x 10 ⁻⁴	9.69

A two-compartment PK model was obtained and used in the PBBM to run the simulations. It presented a good fit (Figure 3) to the Cp-time curve of Lodine[®] 400 mg.

Figure 3. Predicted (line) Cp-time curve using the developed and validated model and observed (squares) Cp-time curve of Lodine 400 mg tables.

Each Z value was incorporated in the model and ten virtual bioequivalences (VBE) were run for each condition in comparison to Lodine[®]. Table 3 brings a summary of the results found in the VBE.

Figure 1. PBBM workflow.

Results

The pH-dependent solubility of etodolac was observed in the dissolution profiles obtained at different pH conditions (Figure 2).

Table 2. Average VBE results for Z-factor of Flancox (Test) *versus* Lodine (Reference) with 90% CI using dissolution profiles obtained on pH 5.5, 6.0, 6.4 and 6.8.

	Cmax	Cmax	AUC _{0-t}	AUC _{0-t}
рН	Geometric ratio (%) (T/R)	90 % CI	Geometric ratio (%) (T/R)	90% CI
5.5	104	96 - 114	100	91 - 111
6.0	103	95 - 112	100	90 - 111
6.4	99	91 - 107	100	91 - 111
6.8	92	84 - 100	100	90 - 110

The results showed similar predicted in vivo dissolution behavior of the evaluated drug product Flancox[®], with high probability to be bioequivalent to the FDA's reference drug product, Lodine [®].

Conclusion

Although etodolac is a BCS class II drug, under pH conditions above its pKa, it behaves as a BCS class I drug, according to the predictions and virtual bioequivalence studies.

Figure 2. Dissolution profiles of Flancox[®] 400mg tablets (n = 3), obtained using USP apparatus 2 (paddle) at 50 rpm, and 1000 mL of 0.05M phosphate buffer (PB) solutions at pH 5.5, 6.0, 6.4, and 6.8 at $37^{\circ}C.$

Each dissolution profile (Figure 2) was modeled using the Z-factor dissolution model in GastroPlus[®]. The obtained Z-factor values and the correspondent solubility of the drug are shown in Table 1.

Financial support and Acknowledgements

The authors would like to thank Simulations Plus Inc., (Lancaster, CA, USA) for providing GastroPlus[®] software, UNIFESP for providing the facilities for experimental tests, and Aché Laboratórios (Guarulhos, São Paulo, Brazil) for kindly provided the active pharmaceutical ingredient. This study did not have financial support.

References

[1] Hu, X *et al., Journal of Molecular Liquids*, **volume 316**, page 113779, 2020.

[2] Center for Drug Evaluation and Research. Application number 75054.