

The application of Al-driven Drug Discovery technology for molecular optimization of nuclear receptor ligands

Rafał A. Bachorz

NASDAQ: SLP

Agenda

- ADMET Predictor[®] as a *de novo* drug design environment
 - Available capabilities
 - Properties
- AIDD: Artificial Intelligence Drug Design
 - Key principles
 - Chemically intelligent SMIRKS transformation
- Practical use case: nuclear receptors agonists
 - Proposed workflow
 - QSAR model
 - Results
- Summary

ADMET Predictor®

- Property prediction software (QSAR/QSPR)
 - Predicts over 140 ADMET properties from chemical structure
 - Identifies ADMET liabilities in the form of numeric risk scores
- The HTPK Simulation Module lets you predict fraction absorbed and bioavailable, as well as other PK parameters, using a virtual human, mouse or rat simulation
- ADMET Modeler Module lets you build your own models using our advanced molecular and atomic descriptors
- MedChem Studio Module lets you prioritize lead series, discover SAR trends, and design novel compounds
- **AIDD Module** lets you generate new molecules in the frame of multicriteria optimization

ADMET Predictor®

- Logical flowchart of AIDD algorithm
- Seed structures
- Population initialization
- Property evaluation
- Population pruning
- Generation of new compounds

- Seed structures
- Can be chosen in an arbitrary manner
- Usual choice is to take some wellknown ligands
- Some modifications can be introduced, e.g. bioisosteric replacements
- It is also possible to restrict the generative chemistry with scaffold definition

- Population initialization
- SMIRKS-based transformation
- Currently ca. 150 transforms available
- The pre-created population is the subject of further extension in the generative chemistry loop
- Efficient strategy of chemical space exploration

- Population initialization
- SMIRKS-based transformation
- Currently ca. 150 transforms available
- The pre-created population is the subject of further extension in the generative chemistry loop
- Efficient strategy of chemical space exploration

- Property evaluation
- Multiple ADMET Predictor properties available, e.g.:
 - Fraction absorbed
 - Fraction bioavailable
 - Blood-to-plasma ratio (RBP) for different species
 - Various flavours of solubilities (aqeuous, in simulated fasted gastric fluid, octanolwater partition coefficient, etc.)
 - SynthDiff+ reflecting the synthetic difficulty
 - 3D similarity to predefined ligand
 - Docking score obtained with external tools
 - Biological activity based on custom QSAR model

- Population pruning
- Multicriteria optimization
- Pareto selection
- Calculated properties form a space
- Succesive exploration of Pareto fronts
- Pareto-optimal solutions (molecules) form new population
- New population contains the most valuable individuals

St SimulationsPlus

- Population pruning
- Multicriteria optimization
- Pareto selection
- Calculated properties form a space reflecting qualitative aspects of the molecules
- Succesive exploration of Pareto fronts
- Pareto-optimal solutions (molecules) form a new population
- New population contains the most valuable individuals

- Molecules generation
- SMIRKS transformation applied again
- Contrary do neural network-based generative approaches: fully interpretable
- Chemical space potentially restricted by predefined molecular scaffold
- Entire cycle repeated desired number of times
- Successive improvements of molecules

Nuclear receptors

- Family of ligand regulated transcription factors
- RORs: the retinoic acid-related orphan receptors (α, β, γ)
- Many low-weight compounds exert biological activity by binding to NRs
- The activity of NRs depends on the conformation change
- The conformation change can be initiated by the binding of a small molecule to the protein moiety
- Binding of a ligand functions as a switch that induces a conformational switch
- Linked to many human diseases like: atherosclerosis, osteoporosis, autoimmunological disorders, obesity, asthma, and cancer

Agonistic vs. Inverse Agonistic activity

Agonistic vs. Inverse Agonistic activity

Agonistic vs. Inverse Agonistic activity

Designing new agonists

Literature search

- The ChEMBL data base was mainly used as a source of experimental data
- The biological data for ca. 3500 molecules, both IC50 and EC50 data included
- Expert knowledge was used to categorized molecules as agonists, inverse agonists, and antagonists
- The quality of experimental assays was also inspected – some endpoints were disregarded
- Manual cleaning and data curation
- Separate data sets for ROR agonists and inverse agonists

Biological activity QSAR model

- ADMET Modeler[™] applied here
- Artificial neural network approach
- Target quantity: pEC50
- Classification and regression models
- Threshold separating Active/Inactive classes: 1000 nM
- Key objective for the AIDD molecular optimization
- Good performance of the model

- Selected objective functions:
 - agonistic activity (predicted pEC50)
 - 3D pharmacophoric similarity
 - absorbtion risk
 - synthetic difficulty
- Multiple runs with different setups
- Various reference crystal structures for 3D similarity
- Molecular scaffold definition as a generative chemistry restriction

AIDD calculations

- Carefully inspect candidate molecules
- Multicriteria Decision Analysis techniques employed
 - Vikor
 - Topsis
- All objectives considred simultanously with different weights
- Ranking created
- Each molecule confronted with the SureChEMBL data base
- Patent data
- The exploration of commercially available compounds (https://arthor.docking.org/)

MCDA analysis, compound preselection

- Systematic analysis of the proteinligand interaction
 - **Reference receptor: 4WPF**
 - **Reference interaction with potent** agonist
 - The interactions are quantified in a vector form
 - Analogous representation for AIDDgenerated candidates
 - Tanimoto similarity calculated
 - Additional presumption for final selection

ProLIF

Final selection & Results

- Multiple AIDD calculations with different setups
- Majority of known ligand crystal structures taken into account in the 3D similarity calculation
- 65 compounds selected as final choices
- 28 compounds are being experimentally verified
- Institute of Medical Biology of Polish Academy of Sciences

Final selection

Final selection & Results

Summary

- ADMET Predictor[®] as a *de novo* drug design environment
- AIDD: multicriteria generative chemistry tool
- Application to nuclear receptors
- Searching potent agonists of RORγ
- A workflow involving multiple techniques oriented on hit discovery
- Promissing candidates are being experimentally verified

Acknowledgements

- Dr. Michael Lawless, Simulations Plus
- Dr. Jeremy Jones, Simulations Plus
- Dr. Marcin Ratajewski, Institute of Medical Biology of Polish Academy of Sciences

• SLP University+ Program

SCAN ME

