

Rational Bioavailability Design

Optimizing Bioavailability during Lead Optimization with Global Sensitivity Analysis of Physiologically-Based Pharmacokinetic Simulations

Pankaj R. Daga, Michael B. Bolger, Robert D. Clark, Eric Martin*

Simulations Plus Inc, Lancaster CA

* Novartis Institute of Biomedical Research, Emeryville, CA

©Simulations Plus, Inc., 2017 All rights reserved

Drug Discovery & Development

About 60-80% of animal studies conducted during Lead Opt

Lead ID and Lead Opt together contribute ~32-35% towards the total cost

Thomas et al, ATLA 2010, 38, Supplement 1, 81–85

©Simulations Plus, Inc., 2017 All rights reserved

2

Lead Optimization

Chemists manipulate various properties to improve Drugability

Improving Binding Affinity and Potency

Simulations

SCIENCE + SOFTWARE = SUCCESS

PBPK Models may Prove to be most Informative to Optimization

Model inputs are the properties med chemists can optimize

PBPK Modeling Typically Tuned for Individual Advanced Compounds For Lead Optimization, we must optimize for entire med Chem series

- Typically applied to a few advanced compounds
 - Prioritize expensive animal studies or predict human dose
 - Usually based mainly on experimental inputs
 - Broader studies require global QSAR models
 - Sometimes includes *local* sensitivity analysis
- Lead optimization requires tuning for entire series
 - Requires <u>global</u> sensitivity analysis (GSA)
 - All inputs calculated from structure
 - These can be local QSAR models

©Simulations Plus, Inc., 2017 All rights reserved

Our Approach Applies GSA to PBPK Modeling

First step is to show reliable results for a congeneric series

Case Study #1: Dipeptidyl Peptidase-4 Inhibitors

Trouble with Clearance can be overcome by fitted CL

- 49 Compounds: Single congeneric series reported by Merck in various papers
 - <u>RAT in vivo data</u>

4

7

: %F, CLp

- Physicochemical prop & in vitro data: --

Case Study #1: Dipeptidyl Peptidase-4 Inhibitors

Trouble with Clearance can be overcome by fitted CL

- 49 Compounds: Single congeneric series reported by Merck in various papers
 - RAT in vivo data

8

: %F, CLp

Physicochemical prop & in vitro data: --

Case Study #2: 11β-HSD1 Inhibitors

Hepatocyte CL provides accurate estimate of CL and hence %F

- 81 Compounds: Single congeneric series reported by AstraZeneca in 4 papers
 - <u>RAT in vivo data</u>: %F, CLp

Case Study #3: Internal Kinase-"X" Inhibitor series

In silico inputs are adequate for GSA

10

- 61 compounds : Single congeneric series with experimental data
 - Physicochemical prop & in vitro data: (Solubility, Caco2 permeability, Plasma Protein binding, CL_{int})
 - RAT PK data (%F, AUC, C_{max}, T_{max}, CL_{plasma}, V_{ss})

Our Approach can be used Early in Lead Optimization

Kinase Dataset: Chronological Predictions

GUIETYCE + SOFTWARE = SUCCESS

Local Models OK w/ only ~15 Rat Data Points

Increasing training data size, improved performance

GastroPlus Adapted to %F Prediction for Congeneric Series

Second step: Global Sensitivity Analysis finds key properties

SCIENCE + SOFTWARE = SUCCESS

GSA is Similar to "Design of Experiments"

Instead of 2/3 levels of parameters, we use continuous data

Design of Expt

	Temp	Volume	Catalyst	Yield
Run1	0	10	0.1	Y1 %
Run2	100	10	0.1	Y2 %
Run3	0	50	0.1	Y3 %
Run4	0	10	1	Y4 %
Run5	100	50	0.1	Y5 %
Run6	0	50	10	Y6 %
Run7	100	10	10	Y7 %
Run8	100	50	10	Y8 %

Sw RBP Peff.Sw ogP.LogP LogP CLint -1.0 -0.5 0.0 0.5 1.0 WARE = SUCCESS

			· · · ·						
Name	Peff	LogP	Sw	Fup	CLint	pKa1	pKa2	PredF	
ZINC00002107	0.60	1.24	0.15	16.36	18.08	7.93	2.80	39.44	
ZINC00007778	3.80	3.31	0.89	1.50	112.04	8.66	2.59	15.55	
ZINC00011305	1.34	1.10	0.81	12.90	210.76	7.90	3.73	9.94	
ZINC00029717	6.49	2.64	0.28	14.68	225.55	11.07	1.34	12.10	
ZINC00032335	3.65	2.33	0.83	9.79	25.47	4.81	2.09	53.89	
ZINC00032861	3.64	2.80	0.34	3.79	17.85	3.36	1.86	56.28	
ZINC00049150	0.63	2.13	0.12	3.81	8.12	4.75	0.51	59.55	
ZINC00054843	5.24	1.27	0.73	14.22	118.91	7.28	0.49	22.43	
ZINC00055175	6.29	1.87	0.83	15.73	161.99	11.61	5.31	14.81	
ZINC00056374	6.59	2.10	0.41	9.65	41.82	7.59	1.13	39.70	
ZINC00066137	2.17	1.92	0.42	4.95	30.18	3.94	0.13	53.96	
ZINC00072822	3.62	2.94	0.10	1.69	152.34	6.92	3.24	18.30	
ZINC00073671	1.75	4.05	0.30	0.70	38.04	7.67	3.04	37.99	
ZINC00083088	3.03	2.13	0.22	4.29	52.27	4.11	2.22	30.08	
ZINC00091239	2.71	3.09	0.14	12.97	104.59	10.74	8.33	19.65	

Global Sensitivity Analysis

Difficulties Encountered: Applying GSA to PBPK

1. Two pKa's are adequate to predict accurate pH-Solubility profile

Allows alignment of pKa's in GSA and simplifies message to med chemists

©Simulations Plus, Inc., 2017 All rights reserved

Difficulties Encountered: Applying GSA to PBPK (cntd..)

2. Don't sample impossible property combinations

- Can't use Fourier Amplitude Sensitivity Testing (FAST) or other standard algorithms
- Property sampling points can result in inaccessible combinations by selected series of compounds

Workflow for Sampling Valid Property-Space

Properties from "Drug-like" molecule DB avoids impossible combinations

What can we Achieve with GSA-PLS Models?

- 1. To find sensitive properties and their contribution
- 2. Faster prediction of %F of new compounds (virtual libraries of large number of cmpds)
- 3. Bioavailability landscape around specific compounds

Results are Unique for Each Series

High-Throughput Prediction of %F

%F predicted by PLS models is comparable to G+ prediction (Kinase-X)

The deviation from the line of unity can be attributed to the error in the PLS model

> The series-specific PLS model built using only 8 PC properties

- 1. Sol
- 2. Human Peff
- 3. А-рКа
- 4. В-рКа
- 5. RBP
- 6. CL_{loc}
- 7. Fup
- 8. LogP

Specific Recommendations for Individual Compound

Application in Lead Optimization and Design of New Cmpds Apply evolutionary algorithm & multi-parameter optimization (activity & prop's)

All rights reserved

Sampling/Library Generation & %F Prediction

Entire workflow can be run within ADMET Predictor 8.5

Conclusions

- PBPK modeling can be successfully used in lead optimization phase
- Use of Intrinsic Clearance, but not plasma clearance results in accurate estimate of %F
 - Using CL_{loc}, accurate bioavailability can be predicted for new compounds in a chemical series
- *in silico* predictions can be successfully used in absence of measured input properties (new molecules)
- GSA identifies sensitive properties (medchem series specific)
- The approach can be used in early stage of lead optimization
 - Even with 15-18 molecules with Rat PK data
- Sensitive properties can guide molecular design

Acknowledgements

NIBR

- CADD group, EMV
- MAP group, EMV
- Chemists and Biologists

<u>SLP</u>

- Marvin Waldman
- Robert Fraczkiewicz
- David Miller
- Ola Mikosz
- Michael Lawless
- John DiBella
- Walter S. Woltosz

Thousands of "Rats" who sacrificed their lives for betterment of human health

Simulations Plus: Your end-to-end M&S solutions provider

