### Model-Informed Drug Development

## **2021 Virtual Conference**



Using a population mechanistic TMDD model calibrated on preclinical monkey data to simulate first-in-human

Géraldine Ayral



Which dose to choose to elicit the desired effect (efficacy), without causing harm (safety)?





Which dose to choose to elicit the desired effect (efficacy), without causing harm (safety)?

#### No Observable Adverse Effect Level:

- Determine NOAEL dose in preclinical species
- Scale to human based on bodyweight or BSA
- Add 10-fold safety margin

### Not safe, because focuses on dose, not effect.



Which dose to choose to elicit the desired effect (efficacy), without causing harm (safety)?

#### No Observable Adverse Effect Level:

- Determine NOAEL dose in preclinical species
- Scale to human based on bodyweight or BSA
- Add 10-fold safety margin

#### Minimal Anticipated Biological Effect Level:

- Requires to understand the PD (biological effect)
- PK/PD modeling can give valuable insight (e.g on receptor occupancy)



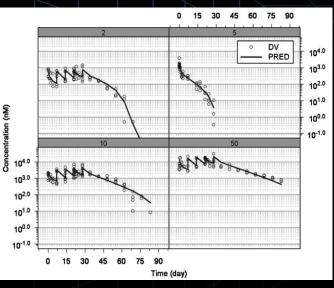


Which dose to choose to elicit the desired effect (efficacy), without causing harm (safety)?

#### No Observable Adverse Effect Level:

- Determine NOAEL dose in preclinical species
- Scale to human based on bodyweight or BSA
- Add 10-fold safety margin

### Minimal Anticipated Biological Effect Level:


- Requires to understand the PD (biological effect)
- PK/PD modeling can give valuable insight (e.g on receptor occupancy)

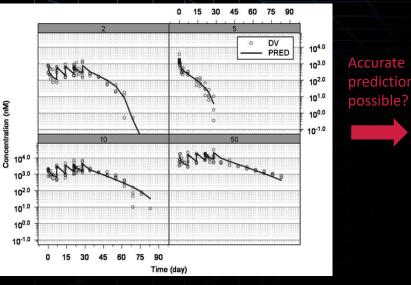
### Can we accurately predict the human PK and PD to determine the MABEL using a model fitted on preclinical data?



### Case study

Preclinical monkey PK

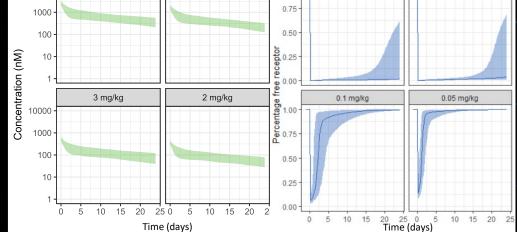



Luu KT et al. (2012). A Model-Based Approach to Predicting the Human Pharmacokinetics of a Monoclonal Antibody Exhibiting Target-Mediated Drug Disposition. *Journal of Pharmacology and Experimental Therapeutics*, *341*(3), 702–708.

- PF-03446962, an IgG2 antibody directed against human ALK1 receptor
- ALK1 is a cell surface type I receptor of the TGFβ receptor family expressed on endothelial cells as well as various solid tumors
- ALK1 has been proposed as an antiangiogenic target



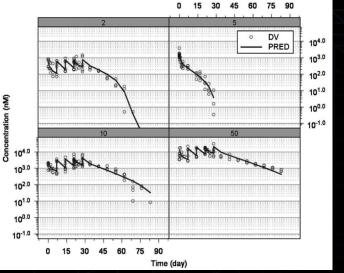
10000


#### Preclinical monkey PK



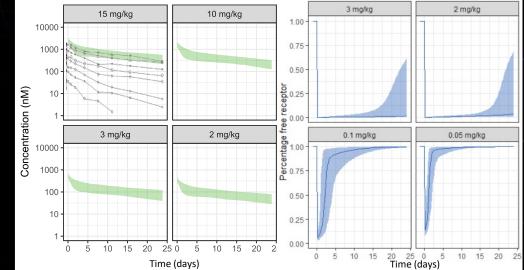
Luu KT et al. (2012). A Model-Based Approach to Predicting the Human Pharmacokinetics of a Monoclonal Antibody Exhibiting Target-Mediated Drug Disposition. *Journal of Pharmacology and Experimental Therapeutics*, *341*(3), 702–708.











2 ma/ka

#### Preclinical monkey PK



Luu KT et al. (2012). A Model-Based Approach to Predicting the Human Pharmacokinetics of a Monoclonal Antibody Exhibiting Target-Mediated Drug Disposition. *Journal of Pharmacology and Experimental Therapeutics*, 341(3), 702–708.

Accurate prediction possible?



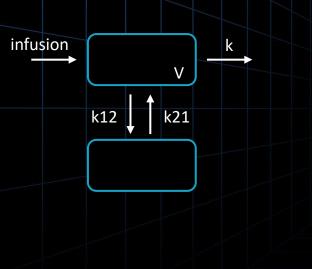
Human PK and PD

Goff LW et al. (2016) A Phase I Study of the Anti-Activin Receptor-Like Kinase 1 (ALK-1) Monoclonal Antibody PF-03446962 in Patients with Advanced Solid Tumors. *Clinical Cancer Research*, 22(9), 2146–2154.

> SI SimulationsPlus Cognigen | DILIsym Services | Lixoft

## Workflow

### Monolix




Step 1: Develop a popPK model to capture the monkey data Step 2: Scale the monkey parameters to human Step 3: Predict the human PK and PD for various doses

Simulx

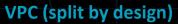


#### 2-compartment model

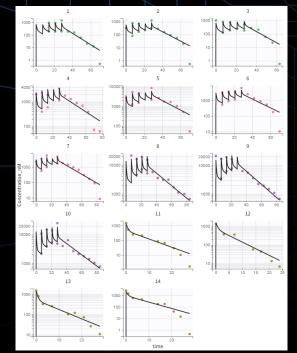


#### Setup in Monolix GUI

| _2cpt.mlxtra  | an - Monolix | estimation - 2020R1              |                           |                           | x          |  |
|---------------|--------------|----------------------------------|---------------------------|---------------------------|------------|--|
|               |              |                                  |                           |                           | <b>0</b> 1 |  |
|               |              | Initial estimates Statistical mo | del & Tasks Results Plots |                           | 9          |  |
|               |              | Administration                   | Distribution              | Elimination               |            |  |
|               | bolus        |                                  | 1 compartment             | linear                    |            |  |
|               |              |                                  |                           | Michaelis-Menten          |            |  |
| uble          | oral/extrava | scular                           | 3 compartments            |                           |            |  |
| uble<br>ption | oral/extrava | scular and bolus/infusion        |                           |                           |            |  |
|               |              |                                  |                           | CLEAR FILT                | ERS        |  |
|               | 2002         | 3                                |                           | infusion_2cpt_CIV1QV2     | Ð          |  |
|               |              |                                  |                           | infusion_2cpt_Vkk12k21    | 8          |  |
|               | Bigha Beta ( | 30                               |                           | infusion_2cpt_alphabetaAB | Ð          |  |
|               |              |                                  |                           |                           |            |  |
|               |              |                                  |                           |                           |            |  |
|               |              |                                  |                           |                           |            |  |

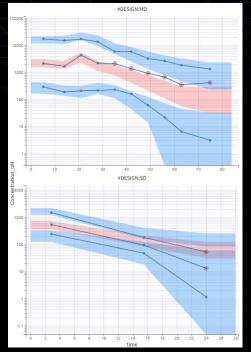

#### **Estimated parameters**

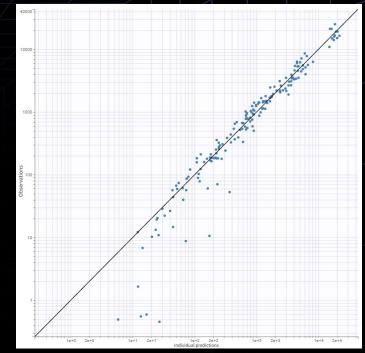
|     | Value     | CV  |
|-----|-----------|-----|
| V/F | 22 mL/kg  | 17% |
| k   | 0.21 /day | 29% |
| k12 | 0.80 /day | 36% |
| k21 | 0.57 /day | 30% |




lecords per page: 3

Individual fits





#### **Obs versus Pred**



Model-Informed Drug Development

2021 Virtual Confer







### Workflow

### Monolix



Step 1: Develop a popPK model to capture the monkey data Step 2: Scale the monkey parameters to human Step 3: Predict the human PK and PD for various doses

Simulx





## **Step 2:** Parameter scaling to human

### Monkey PK parameters are scaled using typical allometric scaling

|    |                             | Monkey                                | CV  |    |                                                                            |                | Human              | CV   |                                      |
|----|-----------------------------|---------------------------------------|-----|----|----------------------------------------------------------------------------|----------------|--------------------|------|--------------------------------------|
|    | V/F                         | 22 mL/kg                              | 17% | => | Fixed to typical value for IgGs                                            | =>             | 40 mL/kg           | 17%  |                                      |
|    | k                           | 0.21 /day                             | 29% | => | Allometric scaling $k_h = k_m \left(\frac{70}{4}\right)^{-0.25}$           | =>             | 0.10 /day          | 29%  |                                      |
|    | k12                         | 0.80 /day                             | 36% | => | Allometric scaling $k_{12,h} = k_{12,m} \left(\frac{70}{4}\right)^{-0.25}$ | =>             | 0.39 /day          | 36%  |                                      |
|    | k21                         | 0.57 /day                             | 30% | => | Allometric scaling $k_{21,h} = k_{21,m} \left(\frac{70}{4}\right)^{-0.25}$ |                | 0.28 /day          | 30%  |                                      |
| CL | $m\left(\frac{B}{B}\right)$ | $\left(\frac{W_h}{W_h}\right)^{0.75}$ | and |    | $V_h = V_m \left(\frac{BW_h}{BW}\right)^1$                                 | k <sub>h</sub> | $= \frac{CL_h}{2}$ | = km | $\left(\underline{BW_h}\right)^{-0}$ |
|    | $m \setminus B$             | $W_m$                                 | anu |    | $M \to M (BW_m)$                                                           | ·•1            | $V_h$              | ""   | $(BW_m)$                             |



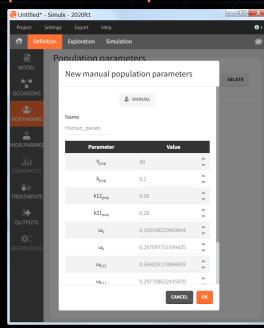
 $CL_h$ 

## Workflow

### Monolix



Step 1: Develop a popPK model to capture the monkey data Step 2: Scale the monkey parameters to human Step 3: Predict the human PK and PD for various doses

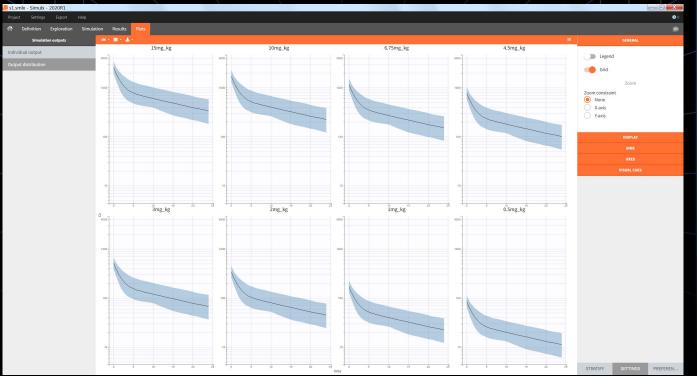

Simulx



#### Import of Monolix run into Simulx

| 🙋 Untitled* | - Simulx - 2020R1                                                                                                                                                                                                                                                                    | x          |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Project     | Settings Export Help                                                                                                                                                                                                                                                                 | <b>0</b> 1 |
| 🕋 Defi      | nition Exploration Simulation                                                                                                                                                                                                                                                        | P          |
| MODEL       | Model<br>Model based on:<br>C:/ProgramData/LaoR/MonoliisSuite2020R1/factory/library/pk/infusion_2cpt_Vkk12K21.tet                                                                                                                                                                    |            |
| OCCASIONS   | 🗄 BROWSE 🐘 LOAD FROM LIBRARY 🛛 C RELOAD 🕑 OPEN IN EDITOR                                                                                                                                                                                                                             |            |
| POP.PARAMS  | 1 [INDIVIDURA]<br>2 input = {V pop, omega V, k pop, omega k, k12 pop, omega k12, k21 pop,                                                                                                                                                                                            |            |
|             | cmega_k21}<br>3<br>4 DEFINITION:<br>5 V = (distribution=logNormal, typical=V_pop, sd=cmega_V)                                                                                                                                                                                        |            |
| COVARIATES  | <pre>k = (istributio=logicmal, typical=k2l_pop, sd=cmag_k) k12 = (istributio=logicmal, typical=k2l_pop, sd=cmag_k12) k21 = (istributio=logicmal, typical=k2l_pop, sd=cmag_k2l) (LAMOSTUDEIRAL)</pre>                                                                                 |            |
| TREATMENTS  | 11 input = {e, b}<br>12 ;;;; Included file 'infusion_2cpt_Vkkl2k21.txt'<br>13                                                                                                                                                                                                        |            |
|             | 14 DESCRIPTION:<br>15 The administration is via an infusion (requires INFUSION RATE or INFUSION<br>DURATION column-type in the data set).                                                                                                                                            |            |
| CEGRESSORS  | <pre>16 The FK model has a central comparisent (values V), a peripheral comparisent<br/>17 (rate of transfer to and from k12 and k21), and a linear elimination<br/>(elimination rate k).<br/>18 input = (v, k, k12, k21)<br/>19<br/>20 EQUATION:<br/>21 / FK model definition</pre> |            |
|             | Additional lines in the model                                                                                                                                                                                                                                                        |            |

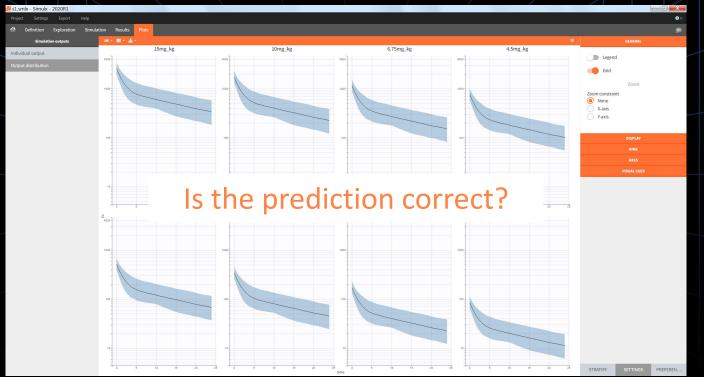
### Modification of the pop parameters to represent human




#### Definition of candidate FIH doses

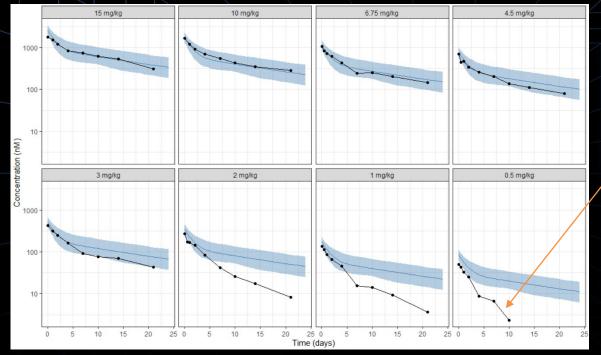
|        | 🖉 Untii  | tled* - Simul | x - 2020R1                         | X          |
|--------|----------|---------------|------------------------------------|------------|
| $\leq$ | Projec   | t Settings    | Export Help                        | <b>0</b> 1 |
|        |          | Definition    | Exploration Simulation             | 9          |
| <      |          |               | eatments                           |            |
|        | MOD      |               | New treatment with manual schedule |            |
|        |          |               | 🕫 REGULAR 🕹 MANUAL 🖷 EXTERNAL      |            |
|        | POP.PAF  |               | Name Adm<br>15mgPerKg 1            |            |
|        | INDIV.PA |               | Infusion: 이 Duration 🔵 Rate        |            |
|        |          |               | Values Time Amount Infusion III-   |            |
|        |          |               | 0 • 104094.37 • 0.0416 • •         |            |
|        | OUTPI    |               | Repeat                             |            |
|        |          | · · · · ·     | Non-compliance probability         |            |
|        |          |               | CANCEL                             |            |
|        |          |               |                                    |            |



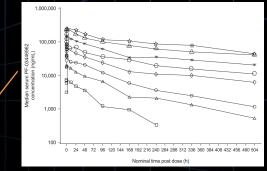

#### Prediction of human PK for various dose levels








#### Prediction of human PK for various dose levels






#### Prediction of human PK overlaid with averaged phase I data



#### Phase I data (Goff et al. 2016)



Average over n=6 per group

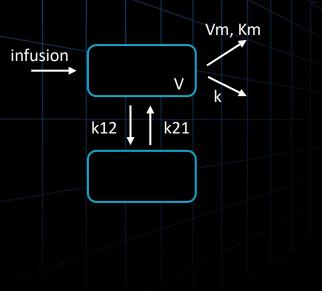
# Wrong prediction for the small doses.





### Workflow

### Monolix




Step 1: Develop a popPK model to capture the monkey data Step 2: Scale the monkey parameters to human Step 3: Predict the human PK and PD for various doses

Simulx



#### MM TMDD model



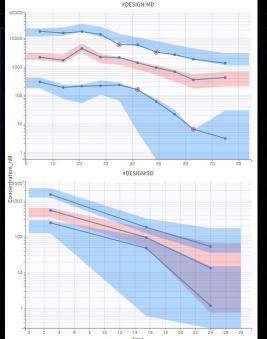
#### **Setup in Monolix GUI**

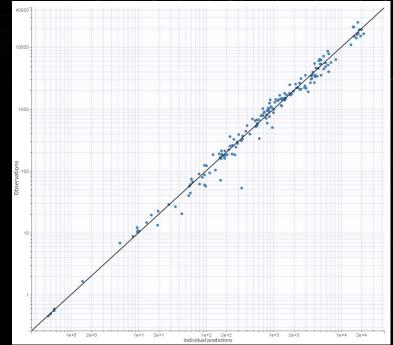
🖉 r2

|        |         |                                        |                   |                           |     |                              | _ [                  | X         |
|--------|---------|----------------------------------------|-------------------|---------------------------|-----|------------------------------|----------------------|-----------|
| MM.mb  | xtran*  | - Monolix                              | estimation - 202  | OR1                       |     |                              |                      | <u> </u>  |
| ect S  | Setting | s Export                               | Help              |                           |     |                              |                      | A 2 🚯 1   |
| Data   |         | tural model                            | Initial estimates | Statistical model & Tasks | Res | ults Plots                   |                      | P         |
|        |         | Admir                                  | nistration        | Distribution              |     | <b>TMDD</b> Approximation    | Output               |           |
|        |         | bolus                                  |                   | 1 compartment             |     | Michaelis-Menten             | total ligand Ltot    |           |
|        |         | infusion                               |                   | 2 compartments            |     |                              | free ligand L        |           |
| ouble  |         | oral/extravas                          | cular             |                           |     | QSS                          |                      |           |
| rption |         | oral/extravas<br>bolus/infusio         | cular and<br>in   |                           |     | Full                         |                      |           |
|        |         |                                        |                   |                           |     | Wagner                       |                      |           |
|        |         |                                        |                   |                           |     | Constant Rtot                |                      |           |
|        |         |                                        |                   |                           |     | Const. Rtot and irr. binding |                      |           |
|        |         |                                        |                   |                           |     | Irreversible binding         |                      |           |
|        |         | <u>م</u>                               |                   |                           |     |                              | CLEA                 | R FILTERS |
|        |         | V Q V2 Q                               | Km Vm             |                           |     | infusion_2cpt_               | MM_VVmKmClQV2_outp   | itt. 🛛 🖯  |
|        |         |                                        | Km Vm kel         |                           |     | infusion_2cpt_MM             | _VVmKmkelk12k21_outp |           |
|        |         |                                        |                   |                           |     |                              |                      |           |
|        |         | Records per page:<br>Showing 1 to 2 of |                   |                           |     |                              | I                    | CANCEL    |

#### **Estimated parameters**

|     | Value     | CV  |
|-----|-----------|-----|
| V/F | 22 mL/kg  | 18% |
| k   | 0.15 /day | 14% |
| k12 | 0.79 /day | 15% |
| k21 | 0.39 /day | 11% |
| Vm  | 27 nM/day | 42% |
| Km  | 3.5 nM    | 61% |





**Individual fits** 

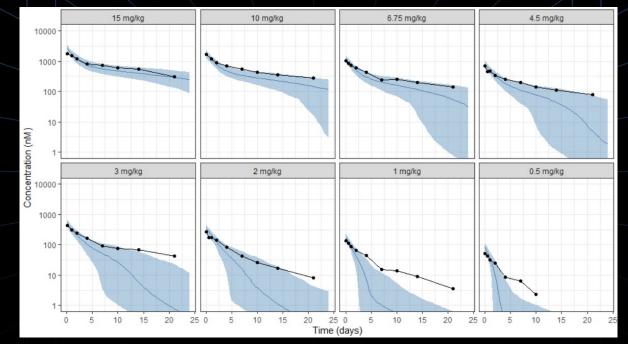
# 10000 NM MM 0000 -INN INN 10000

time

### VPC (split by design)






**Obs versus Pred** 



## **Step 2b:** Parameter scaling to human

#### Monkey PK parameters are scaled using typical allometric scaling

|     | Monkey    | CV  |    |                                                                            |    | Human      | CV  |
|-----|-----------|-----|----|----------------------------------------------------------------------------|----|------------|-----|
| V/F | 22 mL/kg  | 18% | => | Fixed to typical value for IgGs                                            | => | 40 mL/kg   | 18% |
| k   | 0.15 /day | 14% | => | Allometric scaling $k_h = k_m \left(rac{70}{4} ight)^{-0.25}$             | => | 0.073 /day | 14% |
| k12 | 0.79 /day | 15% | => | Allometric scaling $k_{12h} = k_{12,m} \left(\frac{70}{4}\right)^{-0.25}$  | => | 0.39 /day  | 15% |
| k21 | 0.39 /day | 11% | => | Allometric scaling $k_{21,h} = k_{21,m} \left(\frac{70}{4}\right)^{-0.25}$ | => | 0.19 /day  | 11% |
| Vm  | 27 nM/day | 42% | => | Assumed identical                                                          | => | 27 nM/day  | 42% |
| Km  | 3.5 nM    | 61% | => | Assumed identical                                                          | => | 3.5 nM     | 61% |



#### Prediction of human PK overlaid with averaged phase I data

Wrong prediction for the small doses.





## Workflow

### Monolix



Step 1: Develop a popPK model to capture the monkey data Step 2: Scale the monkey parameters to human Step 3: Predict the human PK and PD for various doses

Simulx



#### Mechanistic model QE model



#### Setup in Monolix GUI

| r2_MM.mlxt | ran - Monolix estimation - 2020R1                  |                                  |                              |                                |
|------------|----------------------------------------------------|----------------------------------|------------------------------|--------------------------------|
|            | ttings Export Help                                 |                                  |                              | <b>0</b> 1                     |
|            | Structural model Initial estimates S               | tatistical model & Tasks Results |                              | ø                              |
|            | Administration                                     | Distribution                     | TMDD Approximation           | Output                         |
|            | bolus                                              | 1 compartment                    | Michaelis-Menten             | total ligand Ltot              |
| РКРО       | infusion                                           | 2 compartments                   | QE                           | free ligand L                  |
| PK Double  | oral/extravascular                                 |                                  | QSS                          |                                |
| Absorption | oral/extravascular and<br>bolus/infusion           |                                  | Full                         |                                |
|            |                                                    |                                  | Wagner                       |                                |
|            |                                                    |                                  | Constant Rtot                |                                |
|            |                                                    |                                  | Const. Rtot and irr. binding |                                |
|            |                                                    |                                  | Irreversible binding         |                                |
|            |                                                    |                                  |                              | CLEAR FILTERS                  |
|            | V Q V2 C kint TO kays 80                           |                                  | infusion_2cpt_               | QE_VkintKDksynR0ClQV2_outputL  |
|            | V k12 k21 kint K0 kaya 80 kel                      |                                  | infusion_2cpt_QE_            | VkintKDksynR0kelk12k21_outputL |
|            |                                                    |                                  |                              |                                |
|            |                                                    |                                  |                              |                                |
|            |                                                    |                                  |                              |                                |
|            |                                                    |                                  |                              |                                |
|            |                                                    |                                  |                              |                                |
|            |                                                    |                                  |                              |                                |
|            |                                                    |                                  |                              |                                |
|            | Records per page: 2<br>Showing 1 to 2 of 2 entries |                                  |                              | CANCEL                         |
|            | prowing 1 to 2 or 2 effortes                       |                                  |                              |                                |
|            |                                                    |                                  |                              |                                |

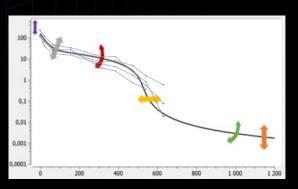




#### Mechanistic model QE model

#### Setup in Monolix GUI




Model-Informed Drug Developmen

2021 Virtual Confer

| 1.           |                                                    |                                  |                              |                                   |
|--------------|----------------------------------------------------|----------------------------------|------------------------------|-----------------------------------|
| 🗧 r2_MM.mixt | ran - Monolix estimation - 2020R1                  |                                  |                              |                                   |
|              |                                                    |                                  |                              | 0 1                               |
|              | Structural model Initial estimates S               | tatistical model & Tasks Results |                              | 9                                 |
|              | Administration                                     | Distribution                     | TMDD Approximation           | Output                            |
|              | bolus                                              | 1 compartment                    | Michaelis-Menten             | total ligand Ltot                 |
|              | infusion                                           | 2 compartments                   | QE                           | free ligand L                     |
| PK Double    | oral/extravascular                                 |                                  | QSS                          |                                   |
| Absorption   | oral/extravascular and<br>bolus/infusion           |                                  | Full                         |                                   |
|              |                                                    |                                  | Wagner                       |                                   |
|              |                                                    |                                  | Constant Rtot                |                                   |
|              |                                                    |                                  | Const. Rtot and irr. binding |                                   |
|              |                                                    |                                  | Irreversible binding         |                                   |
|              |                                                    |                                  |                              | CLEAR FILTERS                     |
|              | V Q V2 C kint ID kom R0                            |                                  | infusion_2cpt_Q              | E_VkintKDksynR0ClQV2_outputL      |
|              | V E12 E21 Kirt KO kayn B0 An                       |                                  | infusion_2cpt_QE_V           | kintKDksynR0kelk12k21_outputL 🛛 🛽 |
|              |                                                    |                                  |                              |                                   |
|              |                                                    |                                  |                              |                                   |
|              |                                                    |                                  |                              |                                   |
|              |                                                    |                                  |                              |                                   |
|              |                                                    |                                  |                              |                                   |
|              |                                                    |                                  |                              |                                   |
|              |                                                    |                                  |                              |                                   |
|              | Records per page: 2<br>Showing 1 to 2 of 2 entries |                                  |                              | CANCEL                            |
|              | 1010111g 10 10 10 10 10 10                         |                                  |                              |                                   |

### KD and kint are not identifiable from the data





#### Literature values

|      | Monkey  | Human   | Experiment                |
|------|---------|---------|---------------------------|
| kint | 14 /day | 18 /day | internalization via FACS  |
| KD   | 2.4 nM  | 2.9 nM  | surface plasmon resonance |
| kdeg | _       | 5 /day  | decay via RNA expression  |
|      |         |         |                           |
|      |         |         |                           |
|      |         |         |                           |
|      |         |         |                           |
|      |         |         |                           |
|      |         |         |                           |
|      |         |         |                           |
|      |         |         |                           |
|      |         |         |                           |

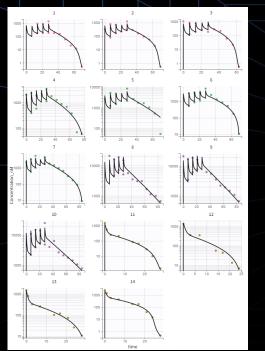
#### Setup in Monolix GUI

|            |         |              | -/            | 1                   | X                   |              |                   |                  |                         |
|------------|---------|--------------|---------------|---------------------|---------------------|--------------|-------------------|------------------|-------------------------|
| r3_QE.     | mlxtran | - Monolix    | estimation    | - 2020R1            |                     |              |                   |                  | _ <b>_</b> X            |
| Project    | Settir  | ngs Expo     | ort Help      |                     |                     |              |                   |                  | <b>()</b> 2             |
| N Da       | ata Str | uctural mode | l Initial est | imates Statistic    | al model & Tasks Pl | ots          |                   |                  | ø                       |
| nitial est | imates  |              |               |                     |                     |              |                   |                  | es: All   Fixed effects |
| heck ini   | tial    |              |               |                     |                     |              |                   | Fix parameters v | alues: All   None       |
| stimates   |         | Рорі         | ilation d     | istribution p       | arameters           |              |                   |                  |                         |
|            |         | PAR          | AMETERS       |                     | POPULATION          |              |                   | STD. DEVIATIONS  |                         |
|            |         |              | v             | V <sub>pop</sub>    | 22.2184             | ‡ ¢          | ω <sub>V</sub>    | 1                | ÷ •                     |
|            |         |              |               |                     | 14                  | <u></u>      |                   |                  |                         |
|            |         |              | kint          | kint <sub>pop</sub> | 14                  | _ <b>`</b> * |                   |                  |                         |
|            |         |              | KD            | KDpop               | 2.4                 | ÷ •          |                   |                  |                         |
|            |         |              |               |                     |                     |              |                   |                  |                         |
|            |         |              | kdeg          | kdeg <sub>pop</sub> | 5                   | ÷ +          | ω <sub>kdeg</sub> | 1                | ‡ ¢                     |
|            |         |              |               |                     | 5                   | ‡ ¢          |                   | 1                | ÷ •                     |
|            |         |              | R0            | R0 <sub>pop</sub>   | -                   | ¥ ¥          | ω <sub>R0</sub>   |                  | * *                     |
|            |         |              | kel           | kelpop              | 0.1504581           | ¢ ¢          | ω <sub>kel</sub>  | 1                | ÷ •                     |
|            |         |              |               | pop                 |                     |              | . 1963            |                  |                         |
|            |         |              | k12           | k12 <sub>pop</sub>  | 0.699189            | ‡ •          | ω <sub>k12</sub>  | 1                | ‡ ¢                     |
|            |         |              |               |                     | 0.3745626           | ¢ ¢          |                   | 1                | ÷ •                     |
|            |         |              | k21           | k21 <sub>pop</sub>  |                     |              | ω <sub>k21</sub>  |                  | * *                     |
|            |         |              |               |                     |                     |              |                   |                  |                         |
|            |         | Resi         | dual erro     | r parameter         | s                   |              |                   |                  |                         |
|            |         |              |               | •                   |                     |              | <b>^</b>          |                  |                         |
|            |         | Concer       | ntration_nM   | a1                  | ¢ ¢                 | b 0          | .3 🏮 🗘            | c 1              | ¢ ¢                     |
|            |         |              |               |                     |                     |              |                   |                  |                         |

#### Literature values

|      | Monkey  | Human   | Experiment                |
|------|---------|---------|---------------------------|
| kint | 14 /day | 18 /day | internalization via FACS  |
| KD   | 2.4 nM  | 2.9 nM  | surface plasmon resonance |
| kdeg | _       | 5 /day  | decay via RNA expression  |

#### **Estimated parameters**

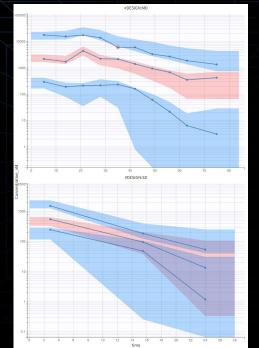

|      | Value           | CV  |
|------|-----------------|-----|
| V/F  | 22 mL/kg        | 23% |
| k    | 0.16 /day       | 30% |
| k12  | 0.88 /day       | 11% |
| k21  | 0.44 /day       | 10% |
| RO   | 1.8 nM          | 29% |
| kint | 14 /day (fixed) | -   |
| kdeg | 13 /day         | 71% |
| KD   | 2.4 nM (fixed)  | -   |

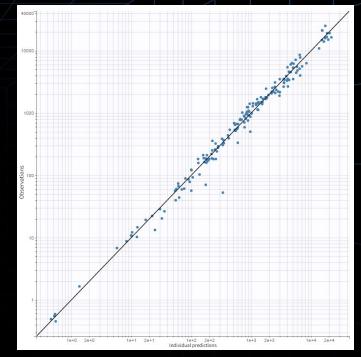
### Setup in Monolix GUI

| r3 OE                | .mlxtran | - Mono      | lix estima    | tion - 2020I | R1                  |                   |       |                 |                  |                                       |      | ×           |
|----------------------|----------|-------------|---------------|--------------|---------------------|-------------------|-------|-----------------|------------------|---------------------------------------|------|-------------|
| Project              |          |             |               | Help         |                     |                   |       |                 |                  |                                       |      | <b>()</b> 2 |
| n D                  | Data St  | ructural me | odel Initi    | al estimates | Statistical n       | nodel & Tasks 🛛 🖡 | Plots |                 |                  |                                       |      | P           |
| nitial es            | stimates |             |               |              |                     |                   |       |                 |                  | Use last estimate<br>Fix parameters v |      |             |
| Check in<br>estimate |          | Ро          | pulatio       | n distrib    | ution par           | ameters           |       |                 |                  |                                       |      |             |
|                      |          | Р           | ARAMETERS     |              | POPULATION          |                   |       | STD. DEVIATIONS |                  |                                       |      |             |
|                      |          |             | v             |              | V <sub>pop</sub>    | 22.2184           | ¢ ‡   | ŭ               | ٥V               | 1                                     | ÷ •  |             |
|                      |          | ſ           | kint          |              | kint <sub>pop</sub> | 14                | ¢ ¢   |                 |                  |                                       |      |             |
|                      |          | Ιl          | KD            |              | KD <sub>pop</sub>   | 2.4               | ÷ •   | J               |                  |                                       |      |             |
|                      |          |             | kdeg          |              | kdeg <sub>pop</sub> | 5                 | ¢ ¢   | ŭ               | Jkdeg            | 1                                     | ‡ ¢  |             |
|                      |          |             | R0            |              | R0 <sub>pop</sub>   | 5                 | ÷ \$  | ŭ               | JRO              | 1                                     | ÷ •  |             |
|                      |          |             | kel           |              | kel <sub>pop</sub>  | 0.1504581         | ‡ ¢   | ŭ               | Jkel             | 1                                     | ÷ •  |             |
|                      |          |             | k12           |              | k12 <sub>pop</sub>  | 0.699189          | ¢ ¢   | ŭ               | J <sub>k12</sub> | 1                                     | ‡ ¢  |             |
|                      |          |             | k21           |              | k21 <sub>pop</sub>  | 0.3745626         | ÷ \$  | ŭ               | J <sub>k21</sub> | 1                                     | ÷ \$ |             |
|                      |          | Re          | sidual e      | error para   | ameters             |                   |       |                 |                  |                                       |      |             |
|                      |          | Con         | ncentration_r | nM a         | 1                   | ÷ *               | b     | 0.3             | ¢ ¢              | c <u>1</u>                            | ÷ \$ |             |
|                      |          |             |               |              |                     |                   |       |                 |                  |                                       |      |             |

S SimulationsPlus Cognigen | DILlsym Services | Lixoft

**Individual fits** 



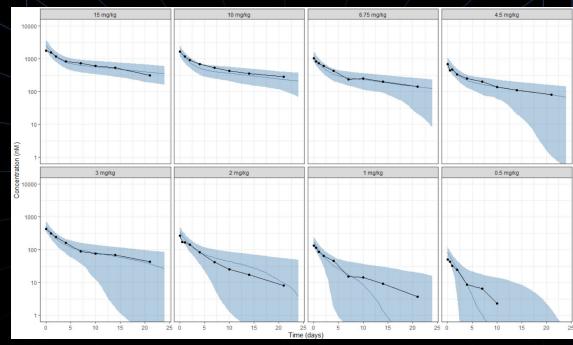


Model-Informed Drug Development

2021 Virtual Confer

### VPC (split by design)

**Obs versus Pred** 






SI SimulationsPlus Cognigen | DILIsym Services | Lixoft

## **Step 2c:** Parameter scaling to human

Monkey PK parameters are scaled using allometric scaling and literature values

|      | Monkey          | CV  |    |                                                                            |    | Human      | CV  |
|------|-----------------|-----|----|----------------------------------------------------------------------------|----|------------|-----|
| V/F  | 22 mL/kg        | 23% | => | Fixed to typical value for IgGs                                            | => | 40 mL/kg   | 23% |
| k    | 0.16 /day       | 30% | => | Allometric scaling $k_h = k_m \left(\frac{70}{4}\right)^{-0.25}$           | => | 0.078 /day | 30% |
| k12  | 0.88 /day       | 11% | => | Allometric scaling $k_{12h} = k_{12,m} \left(\frac{70}{4}\right)^{-0.25}$  | => | 0.43 /day  | 11% |
| k21  | 0.44 /day       | 10% | => | Allometric scaling $k_{21,h} = k_{21,m} \left(\frac{70}{4}\right)^{-0.25}$ | => | 0.22 /day  | 10% |
| RO   | 1.8 nM          | 29% | => | Assumed identical                                                          | => | 1.8 nM     | 29% |
| kint | 14 /day (fixed) | -   | => | Fixed to experimental value                                                | => | 18 /day    | -   |
| kdeg | 13 /day         | 71% | => | Fixed to experimental value                                                | => | 5 /day     | 71% |
| KD   | 2.4 nM (fixed)  | -   | => | Fixed to experimental value                                                | => | 2.9 nM     | -   |

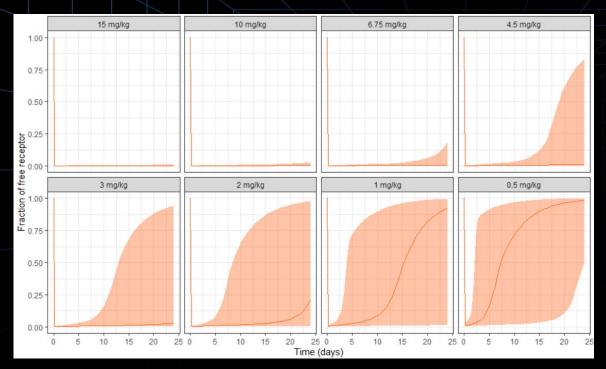


#### Prediction of human PK overlaid with averaged phase I data

**Correct prediction of all doses.** 

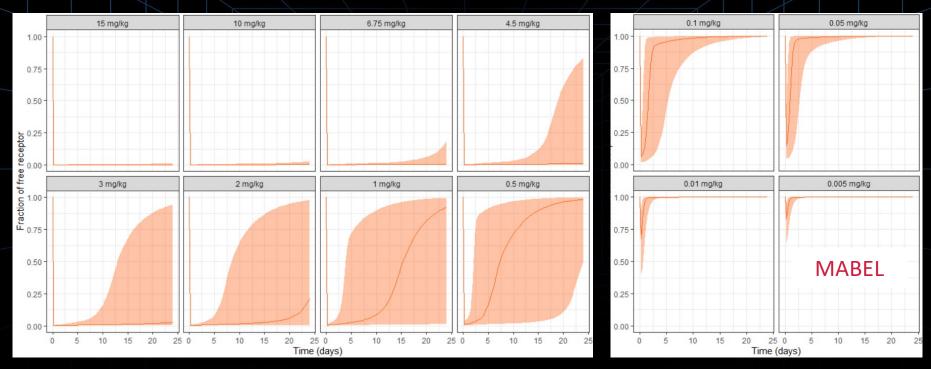





Prediction of free target relative to baseline (surrogate of the biological effect)








Prediction of free target relative to baseline (surrogate of the biological effect)





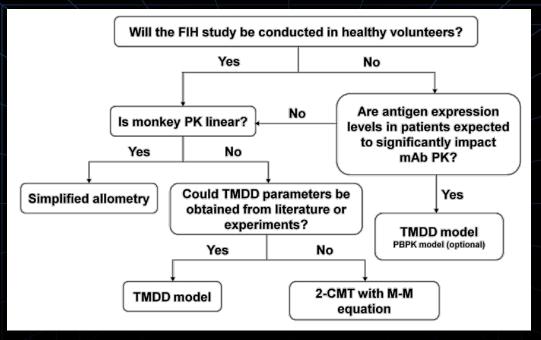
Prediction of free target relative to baseline (surrogate of the biological effect)





### Overview

|                                                 | 2-cpt model           | TMDD MM      | TMDD QE<br>with exp. value |
|-------------------------------------------------|-----------------------|--------------|----------------------------|
| Captures monkey PK                              | <b>≈</b><br>(LL=2448) | ✓ (LL=2360)  | ✓ (LL=2365)                |
| Prediction of high doses<br>(linear PK range)   | $\checkmark$          | $\checkmark$ | $\checkmark$               |
| Prediction of low doses<br>(nonlinear PK range) | ×                     | ×            | $\checkmark$               |
| Prediction of target<br>occupancy               | ×                     | ×            | $\checkmark$               |


The choice of the model depends on the goal.

Which model to choose to predict the human PK (blindly)?





### Guidelines



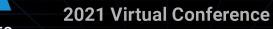
Wang J., Iyer S., Fielder P. J., Davis J. D., & Deng R. (2016). Projecting human pharmacokinetics of monoclonal antibodies from nonclinical data: comparative evaluation of prediction approaches in early drug development. *Biopharmaceutics & Drug Disposition*, 37(2), 51–65.





### Conclusion

### A mechanistic TMDD model with:


- Inear PK parameters allometrically scaled based on preclinical monkey PK data
- TMDD parameters fixed to experimentally measured values

### successfully predicts the human PK of PF-03446962.

This model can be used to simulate target occupancy to determine the MABEL and guide the choice of the first-in-human dose.



Model-Informed Drug Development



**Questions & Answers** 

Learn More! www.simulations-plus.com

SI SimulationsPlus Cognigen | DILIsym Services | Lixoft