Model-Informed Drug Development

2021 Virtual Conference

Optimizing sample size of a phase III trial with Simulx using a phase II popPD model

Claude Magnard

Goal: design of a bridging study

Reference asthma treatment

- Current standard-of-care
- Approved globally (also in China)

New asthma treatment

- FDA approved
- does not include Chinese patients

Plan a bridging study for approval in China

What is the sample size required for a trial in Chinese patients to show a difference in response between the two treatments?

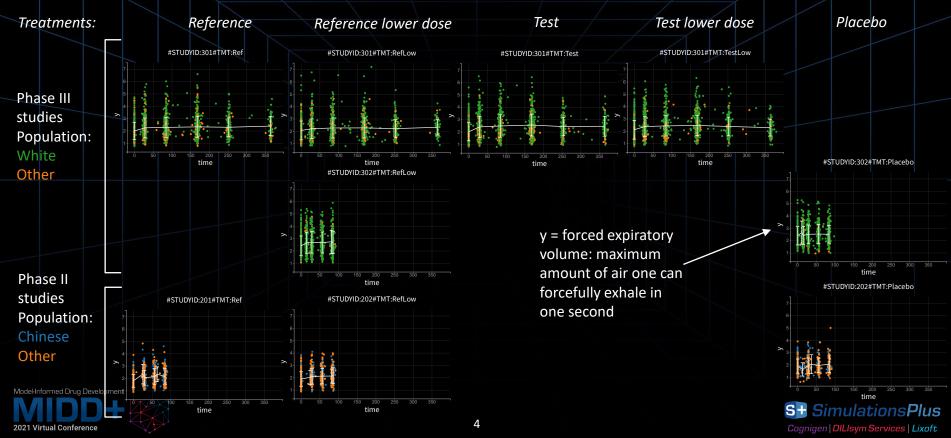
Workflow

Data

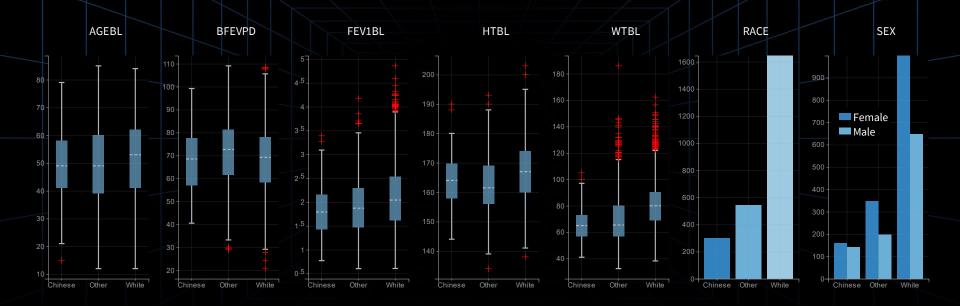
- phase III, NEW treatment, NO Chinese patients
- phase III, REF treatment, NO Chinese patients
- phase II, REF treatment, ONLY Chinese patients

Population modeling in Monolix

- single population model covering the 3 datasets
- Investigate the impact of the covariates for Chinese and non-Chinese patients


Clinical trial simulations in Simulx

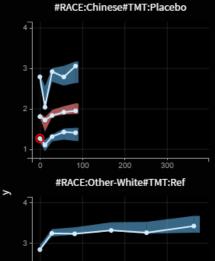
- Predict the response to the new treatment in Chinese asthma patients
- Suggest a minimal sample size for China bridging study

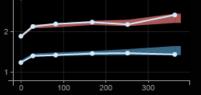


Dataset: observations

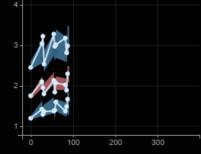
Dataset: covariates

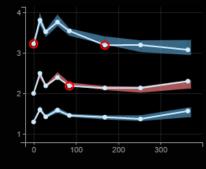
PD Model


тллт

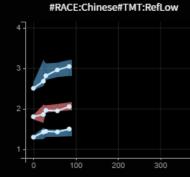

Structural model: exponential

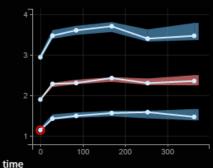
													тур			RACE	Гуріса	
			OUTF				Æ	+++			ß	Placebo	0.9			White	1.32	
EQUAT		, gamma}	outpu	ut = E		E ²⁴ /	1/				F	RefLow	1.34	1		Chinese	1.26	
S = G *	(1-exp(-(1/Td*t)^gam	ıma))								F	Ref	1.59)		Other	1.27	
E = ma:	x(1e-3 <i>,</i> A	+ S)					tin	ne			Т	estLow	1.72	2				↑
											Т	est	2.30)				
Statis	stical r	nodel																
Statis PARAMETERS	stical r		CORRELATION + #1				BFEVPD -				RACE SEX	(STUDYID T	AT WTBL +		logtBFEVPD ▼		gtWTBL - tRA	ACE -
		RANDOM EFFECTS —		AGEBL -	AGEC -	BFEVC -	BFEVPD -	FEV1BL -	HTBL *	HTC -	RACE SEX		IT WTBL *	logtAGEBL →	logtBFEVPD ←	logtHTBL → log		ACE ~
PARAMETERS	DISTRIBUTIONS	RANDOM EFFECTS -		AGEBL *	AGEC ÷	BFEVC →	BFEVPD -		HTBL +							logtHTBL → log		
PARAMETERS	DISTRIBUTIONS	RANDOM EFFECTS	#1						HTBL *					•	✓			
A G	DISTRIBUTIONS	RANDOM EFFECTS	#1					•						•	✓			


PD Model evaluation



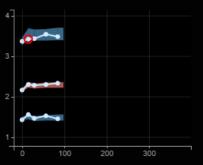
Model-Informed Drug Development


#RACE:Chinese#TMT:Ref

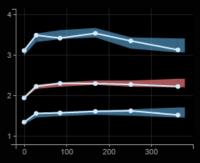

#RACE:Other-White#TMT:RefLow

Prediction interval — Empirical percentiles

#RACE:Other-White#TMT:Test



Outliers


Areas

Dots

#RACE:Other-White#TMT:Placebo

#RACE:Other-White#TMT:TestLow

St SimulationsPlus Cognigen | DILlsym Services | Lixoft

7

Simulate a new population of Chinese patients

What is the mean FEV1 change from baseline at the end of the study?

Is the mean FEV1 change from baseline significantly higher with the new treatment?

What is the probability of such a trial to succeed?

Run scenario for ≠ sizes/durations.

Which minimum design is needed to reach an 85% probability of success?

Simulate a new population of Chinese patients

What is the mean FEV1 change from baseline at the end of the study?

Is the mean FEV1 change from baseline significantly higher with the new treatment?

?

What is the probability of such a trial to succeed?

→ Choose sample size and study duration

Run scenario for ≠ sizes/durations.

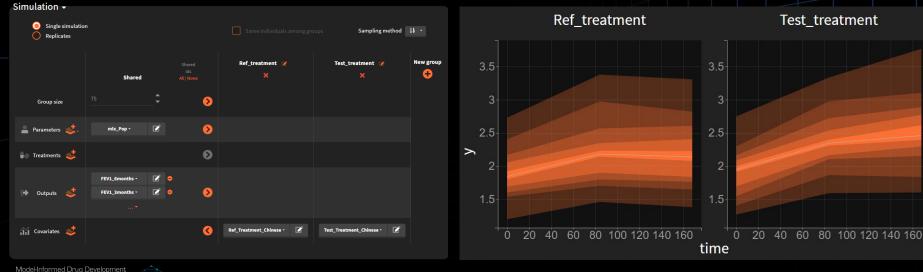
Which minimum design is needed to reach an 85% probability of success?

Setting up simulation elements

 Define endpoint times: 0 and 6 months to observe a change from baseline

New ma	nual out _l	put					
			🕈 REGULAR	🛃 MANUAL	→ EXTERNAL		
Name FEV1_6mont							
Output varia	able	Main outputs *	Intermediate	output -			
Times 0 × 168	×						
						CANCEL	

• Define new covariate distributions


Name

	Continuous covariates				
	Covariate	Distribution	Typical	sd	Limits
Distributions derived	AGEBL	normal	49.99	14.73	
	WTBL	normal	77.06	18.96	
from data, can be	HTBL	normal	165.75	9.46	
adapted to characterize	BFEVPD	normal	68.53	14.12	
better Chinese	FEV1BL	normal	2.03	0.67	
	Categorical covariates				
population	Covariat	e	Category		Probability
	SEX		Female		0.6
	SEA		Male		0.4
			Chinese		1
	RACE		Other		0
New distribution:			White		0
Chinese, receiving the			Placebo		0
test treatment			Ref		1
	тмт		RefLow		0
			Test		0
			TestLow		0

Simulating a Chinese population

 Simulate 2 groups of 75 subjects: ref and test treatments

Output distribution

Simulate a new population of Chinese patients

What is the mean FEV1 change from baseline at the end of the study?

Is the mean FEV1 change from baseline significantly higher with the new treatment?

What is the probability of such a trial to succeed?

- → Choose sample size and study duration
- → Post-process predictions to get a quantitative result

Run scenario for ≠ sizes/durations.

Which minimum design is needed to reach an 85% probability of success?

Quantitative results

 Compute change from baseline for each id, get the mean over ids for each condition

Outcomes & endpoints -

	Outcomes	Endpoint
	meanCFB_3months 🍞	Geometric mean
	ChangeFromBaseline_3months -	🦲 Arithmetic
Outcomes <		Median

The test treatment has a higher outcome than the ref, after 3 and after 6 months.

Simulate a new population of Chinese patients

What is the mean FEV1 change from baseline at the end of the study?

Is the mean FEV1 change from baseline significantly higher with the new treatment?

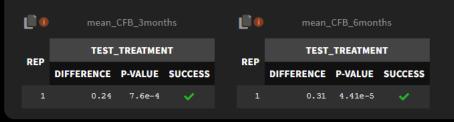
- → Choose sample size and study duration
- → Post-process predictions to get a quantitative result
- → Check success of a simulated clinical trial

Run scenario for ≠ sizes/durations.

Which minimum design is needed to reach an 85% probability of success?

What is the probability of such a trial to succeed?

Is the clinical trial successful?


 Compare groups with an unpaired t-test

Difference statistically significant = trial successful

Endpoint	Group comparison	Reference group
	🔘 Direct comparison 🤘 Statistical test	Ref_treatmen
Geometric mean Arithmetic	difference >• 0	
mean Median	p-value: 0.05	

Group comparison

Simulate a new population of Chinese patients

What is the mean FEV1 change from baseline at the end of the study?

?

Is the mean FEV1 change from baseline significantly higher with the new treatment?

What is the probability of such a trial to succeed?

- → Choose sample size and study duration
- → Post-process predictions to get a quantitative result
- → Check success of a simulated clinical trial

→ Replicate study with different samples to obtain the power of the study Run scenario for ≠ sizes/durations.

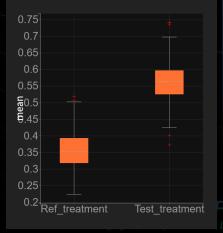
Which minimum design is needed to reach an 85% probability of success?

Power of the study

Run replicates of the study

Simulation -

Single simulationReplicates


 Probability of the trial to succeed = power of the study

Percentage of success over replicates

Ū.	TEST_TREATMENT
mean_CFB_3months	78
mean_CFB_6months	83

Distribution of mean change from baseline over replicates

 \bullet

Simulate a new population of Chinese patients

What is the mean FEV1 change from baseline at the end of the study?

Is the mean FEV1 change from baseline significantly higher with the new treatment?

What is the probability of such a trial to succeed?

- → Choose sample size and study duration
- → Post-process predictions to get a quantitative result
- → Check success of a simulated clinical trial

→ Replicate study with different samples to obtain the power of the study Run scenario for ≠ sizes/durations.

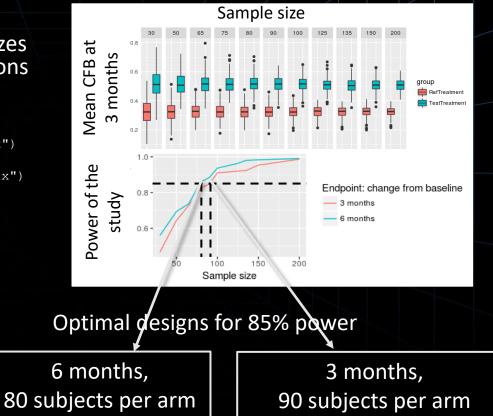
Which minimum design is needed to reach an 85% probability of success?

ST SimulationsPlus Cognigen | DILIsym Services | Lixoft

Simulx: find minimum required sample size

 Repeat scenario for ≠ sample sizes with LixoftConnectors (R functions calling Simulx)

```
library(lixoftConnectors)
initializeLixoftConnectors(software="simulx")
```


```
loadProject(projectFile = "ChineseTrial.smlx")
```

```
sample_sizes <- c(50, 75, 100, 125, 150)
for(N in sample sizes){</pre>
```

```
setGroupSize("test_treatment", N)
setGroupSize("ref_treatment", N)
runSimulation()
```

```
sim <- getSimulationResults()$res$y</pre>
```

Model-Informed Drug Development

Summary: design of a bridging study

Already available

data

Population modeling in Monolix

Clinical trial simulations in Simulx

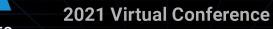
Trial success

Quantitative

outcome

Simulation

Power of study


Optimize trial design with LixoftConnectors

SI Simulations Plus Cognigen | DILIsym Services | Lixoft Model-Informed Drug Development

Questions & Answers

Learn More! www.simulations-plus.com

SI SimulationsPlus Cognigen | DILIsym Services | Lixoft

Additional: endpoints & statistical tests in Simulx

	Outcomo	Endnoint	Metric	Statistical test			
	Outcome	Endpoint	Wetric	Same indiv = True	Same indiv = False		
		Geometric mean	Ratio of means	Paired t-test on log-transformed	Unpaired t-test on log-transformed		
_	Continuous	Arithmetic mean	Difference of means	Paired t-test	Unpaired t-test		
		Median	Difference of medians	Wilcoxon signed rank test	Wilcoxon rank sum test		
	Binary true/false	Percent true	Odds ratio	McNemar's exact test	Fisher's exact test		
~	Time-to-event	Median survival	Difference in median survival	Logrank test with variance correction	Logrank test		

