Model-Informed Drug Development

2021 Virtual Conference

GastroPlus[®] DDI Standards Update Project

Simulations Plus, DDI Task Force

Outline of Process for Model Development and Documentation

- Creation of GP a project starts with structure import using ADMET Predictor Module for both substrates and perpetrators.
 - Physicochemical, biopharmaceutical, and biochemical properties
 - Initial evaluation via "Chemistry Classification" with all aspects of ADMET
 - Extensive literature collection and spreadsheet documentation.
 - Workbook with multiple sheets for Compound Properties
 - DDI study data for multiple perpetration mechanisms.
 - First simulations for "Measured Properties" with parameter sensitivity analysis.
 - Model building for individual substrate and/or perpetrator simulations compared to observed data
 - Single escalating doses (for nonlinear dose dependence)
 - Multiple dosing (for autoinhibition / autoinduction).
 - DDI simulations for all appropriate mechanisms on both substrate and perpetrator.
 - Analysis of results using the "Guest"^{*} criterion for accuracy of AUC Ratios
 - Preparation of slides and written reports suitable for regulatory submission.

Gemfibrozil BCS II Physicochemical Properties

Exp Enzyme Inhibitor: 2C8, 2C9 Exp Transporter Inhibitor: NTCP, OAT3, OATP1B1, OATP1B3

Gemfibrozil Glucuronide Physicochemical Properties

AP 10.0 = ADMET Predictor v. 10.0 S+ = properties predicted with Simulations Plus models S+Sw = native solubility in pure water S+Peff = human jejunal permeability estimate N.A = Not Available

Model-Informed Drug Development Mild Drug Development 2021 Virtual Conference S+LogP = 1.67(AP 10.0) Exp LogD (Octanol/H2O) @ pH7.4 Exp log P extrapolated from Log D

S+pKa = 4.12 (Acid) Exp pKa = N.A

S+Sw = 3.0900 mg/ml @ pH 3.15 (AP 9.5) Exp Sw =N.A S+Solubility Factor = 43.48 S+FaSSIF = 1.13 mg/ml, S+ FeSSIF = 2.71 mg/ml Exp FaSSIF =N.A

S+Peff = 4.0E-5 (cm/s) (AP 10.0)

S+hum_fup% = 11.2% (AP 10.0) Exp. Fup% =11.5% (Shitara et al., J.Pharmacol. Exp.Ther. 311(1):228(2004) NOTE: For all simulations Fup% = 5.0 to correct the Vdss for glucuronide

S+RBP = 0.65 (AP 10.0) Exp Rbp =N.A

S+Enzyme Substrate:

Exp Enzyme Substrate: Hydrolase

S+Transporter Substrate: P-gp(99%), <u>OATP1B1(99%)</u>, OATP1B3(93%), OAT1(65%), OAT3(97%), OCT1(76%) Exp Transporter Substrate: OATP1B1 (liver influx), OAT3 (kidney influx), MRP2 (liver-bile efflux), MRP3 (liversystemic efflux), MRP4 (kidney-tubule efflux)

S+Enzyme Inhibitor: <u>CYP2C9(35%)</u>, CYP3A4(42%) S+Transporter Inhibitor: Exp Enzyme Inhibitor: 2C8, 2C9 Exp Transporter Inhibitor: NTCP, OAT3, OATP1B1, OATP1B3

Extended Clearance CS (ECCS)

Compound are assigned to one of six classes based on: 1) High or low permeability 2) High or low MW (400 g/mol) 3) Ionization class: Acids/Zwitterions versus Bases/Neutrals Class 1A and 2 are metabolism Classes 3A and 4 are renal Class 1B is hepatic uptake Class 3B is hepatic uptake or renal

Varma M., et. al. Pharm. Res. 2015, 32, 3785.

Varma and ADMET Predictor ECCS models

Statistic	ECCS	Hum CL Mech Bin
Concordance	91%	96%
Youden	0.78	0.94
Coverage	88%	92%

Varma M., et. al. Pharm. Res. 2015, 32, 3785.

Purely in silico model

t	GastroPlus(TM): ~003 DDI Standard	SS MBB 2021-02-19.mdb (C:	\Users\Public\Simul\Gastr\Drug	\DDI-2019\Gemfi\\)	>	<			
Ei	le <u>E</u> dit <u>D</u> atabase <u>S</u> imulation Setu	p Controlled <u>R</u> elease To	o <u>l</u> s Modules (Opt <u>i</u> onal) <u>H</u> elp						
Γ	Compound	Gut Physiology-Hum	Pharmac <u>o</u> kinetics	Simulation	<u>G</u> raph				
	Selected Compound ver. 9.8.1003 I Gemfibrozil AP10.0 GP9.8.1 I I I Current= 1; Total = 25 Mean Abs Time (h) = 0.227 Max Abs Dose (S+) = 1.098E+5 mg. Max Abs Dose (it) = 3.34E+4 mg.								

All properties are predictions from ADMET Predictor v10.0.0.0

Tendency Supersaturate=SupSat (89%); Likelihood of BBB Penetration=Low (42%);

ECCS Classification=Class_1A (Metabolism); S+ Mechanistic Clearance Classification=Metabolism;

Human Rbp prediction saved in database. Predicted Rat Rbp = 0.67

Human Fup prediction saved in database. Predicted Rat Fup = 4.2%

Model-Info

2021 Virt

Transporter Inhibitor Classification: OATP1B1-Inhibitor=No (54%); OATP1B3-Inhibitor=No (96%); OCT1-Inhibitor=No (77%); OCT2-Inhibitor=No (99%); OAT1-Inhibitor=Yes (95%); OAT3-Inhibitor=Yes (76%); Pgp-Inhibitor=No (96%); BSEP-Inhibitor=No (66%); BCRP-Inhibitor=No (97%);

Transporter Substrate Classification: OATP1B1-Substrate=Yes (99%); OATP1B3-Substrate=No (60%); OCT1-Substrate=Yes (96%); OCT2-Substrate=Yes (74%); OAT1-Substrate=Yes (87%); OAT3-Substrate=Yes (75%); Pgp-Substrate=Yes (75%); BCRP-Substrate=No (95%);

Transporter Km Values: OATP1B1-Km=24.62uM; OATP1B3-Km=66.47uM; OCT1-Km=8.66uM; OCT2-Km=18.12uM; OAT1-Km=25.48uM; OAT3-Km=122.11uM; Transporter IC50 Values: BSEP-IC50=48.26uM;

		ransporter Table	Particle Size (form 1): R=25.00, D:	=50.00	Dissolution N	o. = 2.5			
	All properties are pre Tendency Supersatu ECCS Classification= Human Rbp predictio Human Fup predictio	dictions from ADMET Predictor v10.0. rate=SupSat (89%); Likelihood of BBI Class_1A (Metabolism); S+ Mechanis on saved in database. Predicted Rat F n saved in database. Predicted Rat F).0.0 B Penetration=Low (42%); stic Clearance Classification=Metabolism; Rbp = 0.67 Fup = 4.2%				Î		
med Drug Development	Transporter Inhibitor	Classification: OATP1B1-Inhibitor=No	o (54%); OATP1B3-Inhibitor=No (96%); OCT1-Inhibitor	=No (77%); OCT2-Inhibitor=No (9	9%); OAT1-Inhibitor	=Yes (95%); OAT3-	~		
IDD+	pKa Table logD: St	ruct-6.1 Diss Model: Johnson	PartSize-Sol: ON BileSalt-Sol: ON Diff: ON	ConstRad: OFF Precip: Time	Ppara: Zhim E	HC: OFF ACAT: Conc		Simulation	sPlus
al Conference							Cognic	en DILIsym Service	es Lixoft

Documentation directly in comment field of database

Compound	Gut Physiology-Hum	Pharmacokinetics	Simulation	Gr	aph
elected Compound ↓ Rifamp 600mg P0 DDI P0 3 urrent= 19; Total = 34	mg MDZ I I I I T Max Abs Rifamp 60		Time (h) = 0.66 ose (lit) = 7.864E+3 mg. I Rifamp 600mg P0 D	DI PO 3mg MDZ Kharasch.m	ıdd
	N N	Mixed Multiple Doses	Effective P 600 0 24	Y ermeability Human Peff (cm/s x 10^4): [Sim Peff x10^4 (Human)]	
Molecular Formula:	C43H58N4012	Dose Volume (mL):	250	Convert from User Data	
Reference logD: 1.). ј 622.36 р 3 @pH: 7,4 Solubility	v (mg/mL @pH=5.5); 0.64	ibility	Biorelevant Solubilities	
pKa Table		Mean Precipitation Time (sec):	900	Dose No. = 3.7763	
Enzyme Tab	le	Drug Particle Density (g/mL):	1.2 A	bsorption No. = 4.893	3
Transporter T	able	Particle Size (form 1): B=25.00, D=50.00	Di	ssolution No. = 12.30	8

 telated

 Prop EC501,HLM = 26 uM and Emax = 4.4 Ref: Anuzanity pharm Pharm Sci-14-2:236-2011: Induction of P-gp by iffampin

 Prog EC501,HEp = 0.192 uM and Emax = 2.5 (start text value) Fef. Lutz-CPT-104-6-1182-2018 concludes that EC50 for P/R induced genes should be the same.

 344 EC501,Hep = 0.192 uM and Emax = 4.7.5 Ref: Ave. of 4 values from Moscovitz, JE. JPET, 365(2):262 (2018) and Varma-Drug Metab Dispos-41-966-2013. Applied to all P/R related

 pKa Table llogD: Struct-6.1
 Diss Model: Johnson
 PartSize-Sol: ON
 BileSalt-Sol: ON ID iff: ON
 ConstRad: ON
 Precip: Time
 Para: Zhim
 EHC: OFF
 ACAT: Conc

All properties are predictions from ADMET Predictor v9.5.0.0 Tendency Supersaturate=SupSat; Likelihood of BBB Penetration=Low (92%); Pgp-Inhibitor=Yes (97%); Pgp-Substrate=Yes (94%); OATP1B1-Inhibitor=Yes (91%); OCT2-Inhibitor=No (95%); BSEP-Inhibitor=Yes (83%); BCRP-Substrate=Yes (54%); ECCS Classification=Class_4; High_MWt; S+ Mechanistic Clearance Classification=HepUptake; Human Rbp prediction saved in database. Predicted Rat Rbp = 1.25 Human Fup prediction saved in database. Predicted Rat Fup = 11.27%

MBB, 4/5/2020, Updated 12/27/2020

Clinical data from

Changed log P to log D(7.4) = 1.3 Ref. Measured in Roche discovery assays: Baneyx-EurJPharmSci-56-1-2014-PBPK modeling of CYP3A4 induction by rifampicin

Used log P = 1.5 to calculate Kps and chnaged back log p=1.3

Changed Solubility to 0.64 at pH 5.5 Ref. Becker-J Pharm Sci-98-7-2252-2009-Rifampicin Biowaiver monograph- pH Vs Solubility profile

Roche PAMPA based conversion to Peff = 0.4E-4 cm/s (a value determined from PAMPA. Ref. Measured in Roche discovery assays: Baneyx-EurJPharmSci-56-1-2014) was increased by 6.2-Fold to 2.48E-4 cm/s per Baneyx for all records. Changed fup% = 7% Ref. Yoshikado-ClinPharmTherap-100-5-513-2016-Supplement

Changed Rbp = 0.8 to calculate Kps that match the Noncompartmental Vdss for healthy subjects.

Induction Added: NOTE: EC50.u = 64 nM Unbound 3A4 induction from Asaumi R, CPT Pharmacometrics Syst. Pharmacol. 7: 186 (2018). Applied to all PXR related genes.

P-gp EC50,t,HLM = 26 uM and Emax = 4.4 Ref: Anuzanit-J pharm Pharm Sci-14-2-236-2011- Induction of P-gp by rifampin P-gp EC50,t,Hep = 0.064 uM and Emax = 2.2 Ref. Lutz-CPT-104-6-1182-2018 concludes that EC50 for PXR induced genes should be the same.

etc.

etc.

UGT1A1 EC50,t,Hep = 0.0.64 uM and Emax = 4.4 Emax is the average of 3 values from Moscovitz (Note: Same Emax as UGT2B7 which are in both Gut and Liver Ref. Moscovitz, 2018

etc.

Inhibition Added:

P-gp inhibition Ki,t,HLM = 13.7 uM Substrate E17G and NMQ Ref. for HEK293 iinverted memb. vessicles Ave. Pedersen-EurJPharmSci-103-70-2017

OATP1B1 inhibition Ki = 0.62 uM Substrate = 3H-TIC Ref. Takashima T. J. Nucl. Med. 53:741 (2012)

3A4 inhibition Ki,u = 18.5 uM Ref. Kajosaari-BasicClinicalPharmacolToxicol-97-249-2005

etc.

Hum PO 900 mg Tab in silico vs. Honkalammi

Physiology used: Healthy Male 23 years 73 Kg 23 BMI

Model-Informed Drug Developme

All mechanisms PBPK Model: Liver and Kidney were assumed Permeability limited organs; the rest were assumed perfusion limited Kps for the Glucuronide record were calculated using the Poulin-extracellular method was used for both Perfusion Limited and for Permeability limited tissues.

Honkalammi et.al., Drug. Metab. Dispos. 39(10):1977(2011)

Conclusions and Recommended Testing Based on *in silico* properties

- Low solubility in stomach probably won't reduce bioavailability but may result in slow dissolution and longer T_{max}.
- Low MWt, high permeability, and acidic pKa of parent GEM suggest mainly metabolic clearance by Phase I (2C9 and 2C19) and Phase II (UGT1A3 and UGT2B7) enzymes.
- AP10.0 transporter module suggests possible liver and kidney influx.
- High MWt, low permability, and acidic pKa of GEM-glucuronide suggests systemic clearance by hepatic and renal influx.
- Both parent and glucuronide metabolite may be involved in DDI inhibition of enzymes.

Outline of Process for Model Development and Documentation

- Creation of GP a project starts with structure import using ADMET Predictor Module for both substrates and perpetrators.
 - Physicochemical, biopharmaceutical, and biochemical properties
 - Initial evaluation via "Chemistry Classification" with all aspects of ADMET
 - Solubility vs. pH, dissolution, absorption (w/ influx and efflux transporters), clearance (metabolic, biliary, and renal), distribution, excretion, and toxicity.
 - Extensive literature collection and spreadsheet documentation.
 - Workbook with multiple sheets for Physicochemical, Metabolic, Transporter, Preclinical, and Clinical single compound and DDI study data for multiple perpetration mechanisms.
 - First simulations for "Measured Properties" with parameter sensitivity analysis.
 - Model building for individual substrate and/or perpetrator simulations compared to observed data for single escalating doses (for nonlinear dose dependence), multiple dosing (for autoinhibition / autoinduction).
 - DDI simulations for all appropriate mechanisms on both substrate and perpetrator.
 - Analysis of results using the "Guest"^{*} criterion for different levels of accuracy cutoff for increasing AUC (inhibition) and decreasing AUC (induction).
 - Preparation of slides and written reports suitable for regulatory submission.

Human Cp vs. time profiles before and after GEM and GEM-glucuronide DDIs

Subset of 13 references from a total of 83:

- 1. Hermening-JChromatogrBBiomedSci-741-2-129-2000-PK profiles-of-gemfibrozil-and-glucuronide-and-covalent-adducts-PO-900-mg
- 2. Hirano-DrugMetabDisp-34-7-1229-2006-DDI-Pitavastatin-Verapamil-Ki-hepatic-uptake-OAT1B1
- 3. Ho-Gastroenterology-130-6-1793-2006-Rosuvatatin-hepatic-uptake-OATP and NTCP-Vmax-Km transporters
- 4. Honkalammi-DrugMetabDispos-39-10-1977-2011-Human data-Repaglinide-Gemfibrozile DDI-2C8 activity
- 5. Kajosaari-Backmann-BasicClinPharmcolToxicol-97-249-2005-Metabolism-Repaglinide-Gemfibrozil-CYP2C8-Ki-CYP3A4
- 6. Nakagomi-Xenobiotica-37-4-416-2007_Inhibition of hOAT3 pravastatin transport by gemfibrozil and glucuronide human
- 7. Nakagomi-Hagihara-Xenobiotica-37-5-474-2007-Gemfibrozil-and-its-glucuronide-inhibit-OATP1B1
- 8. Ogilvie-DrugMetabDispos-34-1-191-2006-Gemfibrozil Glucuronide-HLM study-NADPH dependent inactivation-2C8
- 9. Schneck-ClinPharmacolTher-75-5-455-2004-Rosuvastatin and Gemfibrozil DDI
- 10. Wang-CPT- PharmacometSysPharmacol-6-4-228-2017-Transporter Based DDI Rosuvastatin PBPK model SimCyp
- 11. Wen-Neuvoven-DrugMetabDisposition-29-11-1359-2001-invitro-2C9 inhibition-Gemfibrozil
- 12. Yamazaki-Lin-Xenobiotica-35-7-737-2005-OATP1B1-MRP2-P-gp-mediated transport-Gemfibrozil-DDI-Fibric acid derivatives
- 13. Yoshida-ClinPharmTherap-91-6-1053-2012-Transporter-DDI-of-OATP-Substrates-from-in-vitro-studies-w-Supplements

Extensive Workbook for all DDI Standards

А	В		С	D	E	F	G	н	I J	K L M	N	0
mfibrozil P	Physicochemical Properties			MWt		Estimate	d free base so	olubility usin	g GSE Ref. Sanghvi-Ya	lkowsky-QSARCombSci-22	-2-258-2003-Est	tima
, 05\18\202	0 Updated 09\22\2020			250.34		$\log S = 0.5$	5 – 0.01(m.p. [°]	°C – 25) – log	P solution logS=0.	5 -0.01(122-25)-3.97= -4.45		
						Aq. Sol	- -					
						-5.07E	+00 Log Sol (N	A)				
1	Property		Value	Units	Ref.	8.51E	-06 M	·				
	• •	S+logP	4	Ļ	ADMET Predictor ver. 10.0	0.0	002 g/L					
	Ex	p log D (Oct/H2O)@pH 7.4	2.8	,	Luner-Radebaugh-PharmRes-11-12-1755-1994-G	emfibrozil-pH sol	ase					
	Exp log	P extrapolated from Log D	5.2	1	GP 9.7	<u>File</u> <u>E</u> dit	Options Object	<u>D</u> atabase <u>S</u> ea	ch <u>L</u> ist <u>W</u> indow <u>H</u> elp			
	oKas					EIOBY	TEMASTER-2	008.DB/Main				×
		S+Acid pKa	4.92		ADMET Predictor ver. 10.0		SIS/Base					
		Exp Acid pKa	5		Luner-Radebaugh-PharmRes-11-12-1755-1994-G	emfibrozil-pH solu 🖣 🛙 📕	e Edit Options	Object Datab	ase Search List Window	w Help		
	Solubility				Ū		ABS-SYSTEM	IS-LIGHTHC	USE-DATABASE-MB	B-3-15-05.DB/Main		
	•	S+Sw	0.0826	mg/mL	ADMET Predictor ver. 10.0	t i i i i i i i i i i i i i i i i i i i	Forms Query	Browse Up	late	Search Domain: All	r I	
		S+pH	4.24		ADMET Predictor ver. 10.0	Ť I	Structure				IDS PN	
		S+Solublity Factor	276.89)	ADMET Predictor ver. 10.0					186	1.018	26
		Ag. Sol from GSE	0.00213	ma/ml	Yalkowsky GSE	<u> </u>				100		,0
	Exp. Sc	lubility @ nH 1 @37 deg C	0.02000	ma/ml	Luner-Radebaugh-PharmRes-11-12-1755-1994-G	emfibrozil-pH sol	-					
	Expro-	S+FaSSIE @ nH 6 5	0 4200	mg/ml	ADMET Predictor ver 10.0			0		Compound_Name	CAS_Registryn	Jun
		S+EeSSIE @ pH 5.0	0.4200	mg/mL	ADMET Predictor ver. 10.0				¹ 3 O	Gemfibrozil	25812-	30-1
	Dormoshility	31123311 @ p113.0	0.0200	mg/mc	Admet Fredictor Ver. 10.0		1		~ ^ ́)-он		<u>_</u>	
	Permeability	S+Doff	7 225+04	cm/c	ADMET Productor yor 10.0		H ₃ C	or 🗸 to		*fmla_Structure	*mol.weight_Sti	ructi
		Case 2 Dapp A SP	5 005 05	cin/s	Absorptions Systems Lighthouse Database				CH ₃	C ₁₅ H ₂₂ O ₃	250.34	408
		Caco-2 Papp A-26	4 725 05		Absorptions Systems Lighthouse Database							
		Datio D SA / A SD	4.752-03		Absorptions systems Lighthouse Database					Selected	Therapeutic_Ca	ateg
			E 20E 05		Absorptions Systems Lighthouse Database						Antihyperlipop	orote
		Geolviean B->A and A->B	0.28E-00	Vec/Ne	Absorptions Systems Lighthouse Database							
	0	P-gp Substrate		res/No							1	
	Caco	-2 converted to hum Pett	5.60E-04	cm/s	converted from Geowean of Absorption System	is caco-2	PctBound_HumanF	PlasmaProt_Log	PctBound_RatPlasmaProt_Log	OralBioavailability_LitValue	MolWeight_LDS_File	000
	bioou to Plasma Conc. Katlo	0.01	0.57		ADMET Des distances 10.0		PctRemaining_Hurr	anLiverMsomes	PctRemaining_RatLiverMsomes	Papp_Caco2_AB_Log (Papp x 10E6)	Papp_Caco2_BA_Log	300
		S+Rbp	0.67	1	ADIVIET Predictor Ver. 10.0	S	35.	3000	67.5000	1.7699	1.674	46
		Ex Rbp					BrainPlasmaRatioR	at_Log	Clearance_LitValue (L/h)	Papp_MDR_MDCK_AB_Log	Papp_MDR_MDCK_BA	Log
		Fitted for PBPK					Docebkupher, L #V/	-	1.7000	nKo1	pKo2	
	raction Unbound in Plasma	/					240	.0000	-0.0953	4.8900	proz	
		S+PrUnbnd	5.18	%	ADMET Predictor ver. 10.0		EffluxRatio_MDR_M	MDCK_Log	HIA_LitValue	рКаЗ	HIA_LitValue	
		Ex fup	3.5	%	Oprea and Benet Wombat database							
		Ex fup	2	%	Miller-ClinPharmacokinet-34-2-155-1998-Clinica	Il PK of Fibric Acid	InVitroHalfLife_Hur	nanLvrMsomes (min) 2000	In VitroHalfLife_RatLiverMsomes (m	in) Solubility_LitValue (mg/mL)	Solubility_pH20 (mg/ml	L)
1	Melting Point					<u> </u>	LogP Predicted	3000	57.9000 LogP	Solubility pH74	Uptake RatBrainPerfu	usion
•	Gemfibrozil-Physicochemical	GGluc-Physicochemical	Metabo	lism-Herm	ening 2000 Metab & Clint-LIGT Transpor		4.8	3000	4.6370			
	seminorozne nystochemical	o oluci Physicochennical	metabl	and the fill	ming 2000 Mictab & Cenic Oo1 Manspor		MaximumDoseStre	nαth LitValue	VolumeOfDistribution LitValue (L/K	a) CLint uL min milCells	CLint mL min mg	
_												

Model-In

Extensive Workbook for all DDI Standards

A	B C D E F G H	IJKLMNOPQRST	U V W X Y Z AA AB AC AD AE AF
5	All subjects received 3 mg oral MDZ, followed by the indicated dose of oral ALF. Results	are given as mean ± SD (N = 10).	
5	ND, Not determined (the calculated F _G for MDZ after rifampin was either zero or indefinite compartment; F , oral bioavailability; F _G intestinal bioavailability; CL , effect clearance	e because F _H was zero); CL/F, oral clearance; V ₂ /F, volume of central	
	*Significantly different from same-dose control ($P < .05$).		
2			
2			
4		Midaz. 3 mg PO 12 hr after RIF 600 mg QD for 6 days Baseline	Midaz 3 mg PO 12 hr after RIF 600 mg PO QD for 6 days Full DDI
5		Rifampicin 600 mg Cp vs Time 🛛 🥌 Midazolam 3 mg PO Cp vs Time	
GastroPlus(TM) 9.8.0008	12/23/2020 9:24:33 AM		M ————————————————————————————————————
7 Compound 1:	Victim		Sector Sed Increase in 344 Activity in Liver Marchael Poid Increase in 344 Activity in Liver
8 Database:	Midazolam-GP-9.7-DDI-Standard-VL-2020-09-07-MBB-2020-12-22.mdb		
9 Record:	Midaz PO 3.0mg vs RIF 600mg 5d Kharasch		
0 Compound 2:	Perpetrator: 3A4 ind. & inh., UGT1A3 ind., MRP2 inh., and OATP1B1 inh.		
1 Database:	Rifampicin-GP9.8-DDI-Standard-KS-MBB-SA-RC-2020-12-22.mdb		
2 Record:	Rifamp 600mg PO DDI PO 3mg MDZ Kharasch		║10³4 \╨╆╁入 /\\ /\\ /\\ /\\ /\\ /\\
3			
4 [NewTable]	Dynamic Simulation Results		_ ≒ _ \ <i>i</i> \\ <i>i</i> \ \ <i>i</i> \ <i>i</i> \ <i>i</i> \ \ <i>i</i> \ \ <i>i</i> \ <i>i</i> \ \ <i>i</i> \
5 A	AUC(0-t) AUC(0- Cmax [ng- inf)[ng-	т, т,	
Midaz PO 2. Omgys PIE 600mg Ed Kharasch-basalina		'묥 10'-	
7 Rifamo 600mg PO DDI PO 3mg MDZ Kharasch-baseline	99 95 97 86 90 54 12 76 121 6 473000 474000		
8 BIF-Gluc Metabolite-baseline		e 📲	9 af 📶 🚺 🔍 🔍 🔍 📜 🛓
9 Midaz PO 3.0mg vs RIF 600mg 5d Kharasch-DDI	99.99 5.487 0.756 0.00034 132.4 0.524 0.54		
0 Rifamp 600mg PO DDI PO 3mg MDZ Kharasch-DDI	99.97 86.52 75.92 12.18 1.5 251000 251000	<u> </u>	2 ~ 1/嘛 ──
01 RIF-Gluc Metabolite-DDI	0 0 0 2.419 3.76 92500 92600	U p T 📲 T T	5 •// ^T • • ² • • ² • • •
2 Midaz PO 3.0mg vs RIF 600mg 5d Kharasch-ratio	1 0.196 0.05 0.05 0.998 0.029 0.027	10 ⁻¹	O 10 ⁻¹ // → 13 £
03 Rifamp 600mg PO DDI PO 3mg MDZ Kharasch-ratio	1 0.884 0.839 0.955 0.012 0.531 0.53		
04 RIF-Gluc Metabolite-ratio	0 0 0 1.268 0.038 0.926 0.926		
05		10-2	
DE		0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
07		Simulation Time (h)	Simulation Time (h)
08			U
99			
10			
11			
2			
15			
-			
15			
17			
18			
9			
0			
A			

Inclusion of a spreadsheet for fast editing of Perpetrator

Table with new "Validated" Field

H5	58 🔹 i 🔀 🖌 fx Ogilvie-Parkinson-DrugMetabDispos-34-1-191-2006-Reversible Inhibition (IC50,t,HLM) of paclitaxel metabolism by gemfibrozil glucuronide in HLM.												
	А	В	с	D	Е	F	G	Н	1	J	к	L	м
1		Perpetrators Table											
					InhibitionC								
				InhibitionC	onstantUni	InhibitionConstant					InVitroProt	:	
2	OrigOr	Generic 📑	Enzyme 💌	onstant 💌	ts 💌	Туре 💌	Substrate 💌	Reference	InVitroFt 💌	InVitroFuType	Conc 💌	Kinact 💌	Validate
84	82	Gem Gluc Tornio EC Kps	2C8	20	uM	IC50-irr-in vitro, T	Paclitaxel	Ogilvie-Parkinson-DrugMetabDispos-34	0.992	Calc(Hallifax)-HLM	0.1	0.21	TRUE
85	83	Gem Gluc Tornio EC Kps	2C8	24	uM	IC50-rev-in vitro, T	Paclitaxel	Ogilvie-Parkinson-DrugMetabDispos-34	0.826	Calc(Hallifax)-HLM	0.5	j 0	FALSE
86	84	Gem Gluc Tornio EC Kps	OAT3	9.9	uM	Ki-rev-in vitro, U	14C-Pravastatin	Nakagomi-Hagihara-Xenobiotica-37-4-4	-1	Unknown	0.5	j 0	TRUE
87	85	Gem Gluc Tornio EC Kps	OAT3	13	uM	IC50-rev-in vitro, U	Unknown	Yoshida-ClinPharmTherap-91-6-1053-20	-1	Unknown	0.5	j 0	FALSE
88	86	Gem Gluc Tornio EC Kps	OATP1B1	22.6	uM	Ki-rev-in vitro, U	3H-Pitavastatin	Hirano-Sugiyama-DrugMetabDisposition	-1	Unknown	0.5	j 0	FALSE
89	87	Gem Gluc Tornio EC Kps	OATP1B1	15.7	uM	Ki-rev-in vitro, T	14C-Pravastatin	Nakagomi-hagihara-Xenobiotica-37-5-4	0.987	Calc(Austin)-Hep	0.5	j 0	FALSE
90	88	Gem Gluc Tornio EC Kps	OATP1B1	7.6	uM	Ki-rev-in vitro, U	14C-Pravastatin	Nakagomi-hagihara-Xenobiotica-37-5-4	-1	Unknown	0.5	j 0	TRUE
91	89	Gem Gluc Tornio EC Kps	OATP1B1	14	uM	IC50-rev-in vitro, U	Unknown	Yoshida-ClinPharmTherap-91-6-1053-20	-1	Unknown	0.5	j 0	FALSE
92	90	Gem Gluc Tornio EC Kps	OATP1B3	74	uM	IC50-rev-in vitro, U	Unknown	Yoshida-ClinPharmTherap-91-6-1053-20	-1	Unknown	0.5	j 0	FALSE
93	91	GEM PO 600 mg DDI Repag Tornio	2C8	30.4	uM	Ki-rev-in vitro, T	Paclitaxel	Kajosaari-Backmann-BasicClinPharmcol	0.826	Calc(Hallifax)-HLM	0.5	j 0	TRUE
94	92	GEM PO 600 mg DDI Repag Tornio	2C8	120	uM	IC50-rev-in vitro, T	Paclitaxel	Ogilvie-Parkinson-DrugMetabDispos-34	0.826	Calc(Hallifax)-HLM	0.5	j 0	FALSE
95	93	GEM PO 600 mg DDI Repag Tornio	2C9	30	uM	IC50-rev-in vitro, T	Diclofenac	Ogilvie-Parkinson-DrugMetabDispos-34	0.826	Calc(Hallifax)-HLM	0.5	j 0	FALSE
96	94	GEM PO 600 mg DDI Repag Tornio	2C9	4	uM	Ki-rev-in vitro, U	Tolbutamide	Wang-JPET-302-1-43-2002-Unbound inh	-1	Unknown	0.5	j 0	FALSE
97	95	GEM PO 600 mg DDI Repag Tornio	2C9	5.8	uM	Ki-rev-in vitro, T	Tolbutamide	Wen-Neuvoven-DrugMetabDisposition	0.826	Calc(Hallifax)-HLM	0.5	j 0	TRUE
98	96	GEM PO 600 mg DDI Repag Tornio	NTCP	23	uM	IC50-rev-in vitro, U	Rosuvastatin	Ho et al-Gastroenterology. 2006-130(6)1	-1	Unknown	0.5	j 0	FALSE
99	97	GEM PO 600 mg DDI Repag Tornio	OAT3	3.4	uM	Ki-rev-in vitro, U	14C-Pravastatin	Nakagomi-Hagihara-Xenobiotica-37-4-4	-1	Unknown	0.5	i 0	FALSE
100	98	GEM PO 600 mg DDI Repag Tornio	OAT3	3.2	uM	IC50-rev-in vitro, U	Unknown	Yoshida-ClinPharmTherap-91-6-1053-20	-1	Unknown	0.5	i 0	FALSE
101	99	GEM PO 600 mg DDI Repag Tornio	OATP1B1	25.2	uM	Ki-rev-in vitro, U	3H-Pitavastatin	Hirano-Sugiyama-DrugMetabDisposition	-1	Unknown	0.5	i 0	FALSE
102	100	GEM PO 600 mg DDI Repag Tornio	OATP1B1	31.7	uM	Ki-rev-in vitro, T	14C-Pravastatin	Nakagomi-hagihara-Xenobiotica-37-5-4	0.645	Calc(Austin)-Hep	0.5	5 O	FALSE
103	101	GEM PO 600 mg DDI Repag Tornio	OATP1B1	15.1	uM	Ki-rev-in vitro, U	14C-Pravastatin	Nakagomi-hagihara-Xenobiotica-37-5-4	-1	Unknown	0.5	i 0	FALSE
104	102	GEM PO 600 mg DDI Repag Tornio	OATP1B1	4	uM	IC50-rev-in vitro, U	3H-Rosuvastatin	Schneck-ClinPharmacolTher-75-5-455-20	-1	Unknown	0.5	j 0	FALSE
105	103	GEM PO 600 mg DDI Repag Tornio	OATP1B1	12.5	uM	Ki-rev-in vitro, U	3H-E217BETAG	Yamazaki-Lin-Xenobiotica-35-7-737-200	-1	Unknown	0.5	j 0	TRUE
106	104	GEM PO 600 mg DDI Repag Tornio	OATP1B1	20	uM	IC50-rev-in vitro, U	Unknown	Yoshida-ClinPharmTherap-91-6-1053-20	-1	Unknown	0.5	j 0	FALSE

Cognigen | DILIsym Services | Lixoft

For example: the rifampicin perpetrator table has > 400 rows

15

2021 Virtual Conference

Acyl-glucuronide Conversion to Parent in Gut Lumen

Outline of Process for Model Development and Documentation

- Creation of GP a project starts with structure import using ADMET Predictor Module for both substrates and perpetrators.
 - Physicochemical, biopharmaceutical, and biochemical properties
 - Initial evaluation via "Chemistry Classification" with all aspects of ADMET
 - Solubility vs. pH, dissolution, absorption (w/ influx and efflux transporters), clearance (metabolic, biliary, and renal), distribution, excretion, and toxicity.
 - Extensive literature collection and spreadsheet documentation.
 - Workbook with multiple sheets for Physicochemical, Metabolic, Transporter, Preclinical, and Clinical single compound and DDI study data for multiple perpetration mechanisms.
 - First simulations for "Measured Properties" with parameter sensitivity analysis.
 - Model building for individual substrate and/or perpetrator simulations compared to observed data for single escalating doses (for nonlinear dose dependence), multiple dosing (for autoinhibition / autoinduction).
 - DDI simulations for all appropriate mechanisms on both substrate and perpetrator.
 - Analysis of results using the "Guest"^{*} criterion for different levels of accuracy cutoff for increasing AUC (inhibition) and decreasing AUC (induction).
 - Preparation of slides and written reports suitable for regulatory submission.

Midazolam BCS/BDDCS II Physicochemical Properties

AP 9.5 = ADMET Predictor v. 9.5 S+ = properties predicted with Simulations Plus models S+Sw = native solubility in pure water

Model-Informed Drug Developr

S+Peff = human jejunal permeability estimate

S+LogP = 3.56 (AP 9.5) Exp LogP = 2.7 (Hoffmann-La Roche)

S+pKa = 4.57 (Base) and 0.84 (Base Exp pKa = 6.04 (Andersin-JPharmaceutBioMedAnal-9-6-451-1991)

S+Sw = 2.1 μ g/mL @ pH = 7.05 (AP 9.5) Exp Sw = 54 μ g/mL @ pH 9.5 Andersin, 1991) LOW

S+FaSSIF = 33 μg/mL, S+ FeSSIF = 210 μg/mL Exp FaSSIF = 11 μg/mL, (personal communication ??)

S+Peff = 7.55 x 10⁻⁴ (cm/s) (AP 9.5) HIGH Exp Ussing Papp = 3.8E-5 cm/s (Sjoberg-Ungel, 2013) Conversion to Hum. Jej. Peff = 3.82E-4 cm/s

S+HLM-3A4 Km = 21 μ M Vmax = 3.5 nmol/min/mg Prot. (AP 9.5) Exp CYP3A4 Km = 3.7 μ M (Paine, 1997) Exp CYP3A4 Vmax = 0.85 nmol/min/mg Prot. Exp CYP3A4 Km = 2.27 mM (Walsky, 2004) Exp CYP3A4 Vmax = 1.22 nmol/min/mg Prot.

S+hum_fup% = 6.61 (AP 9.5) Exp. Fup = 4.4% Ave. (de Vries, 199) and (Fisher, 1999)

S+RBP = 0.78 (AP 9.5) Exp Rbp = 0.55 (Gertz, 2011)

St SimulationsPlus Cognigen | DILlsym Services | Lixoft

PBPK Model for Midazolam 7.5 mg PO Solution Bornemann

Assumptions:

- Perfusion-limited midazolam
- Permeability-limited liver and kidney for 1-OH-midazolam
- Added MRP3 liver basolateral to efflux metabolite to systemic circulation for PO records only.
- fu_{ent} = 4.4%
- Clearance:
 - Paine-J. Pharmacol. Exp. Ther., 283:1552 (1997) unbound $K_m = 3.7$ μ M and $V_{max} = 0.85$ nmol/min/mg micro. Prot.
- Distribution:
 - Midazolam Lukacova default Kp calculation
 - 1-OH-midazolam reduced log P = 2.2 to calc. Kps and then ran simulation with log P = 2.57

Clinical data from: Bornemann-EurJClinPharmacol-29-1-91-1985

St SimulationsPlus Cognigen | DILIsym Services | Lixoft

PBPK Model for Midazolam 30 mg PO Solution Bornemann

Assumptions:

- Perfusion-limited midazolam
- Permeability-limited liver and kidney for 1-OH-midazolam
- Added MRP3 liver basolateral to efflux metabolite to systemic circulation for PO records only.

– fu_{ent} = 4.4%

- Clearance:
 - Paine-J. Pharmacol. Exp. Ther., 283:1552 (1997) unbound K_m = 3.7 μM and V_{max} = 0.85 nmol/min/mg micro. Prot.
- Distribution:

Model-Informed Drug Developme

- Midazolam Lukacova default Kp calculation
- 1-OH-midazolam reduced log P = 2.2 to calc. Kps and then ran simulation with log P = 2.57

Clinical data from: Bornemann-EurJClinPharmacol-29-1-91-1985

> St SimulationsPlus Cognigen | DILIsym Services | Lixoft

21

Midaz. 7.5 mg PO Tab DDI vs. Keto. 400 mg QD for 4 days: Olkkola

Baseline Simulation without DDI interactions

Assumptions:

- Perfusion-limited midazolam
- Permeability-limited liver and kidney for 1-OHmidazolam
- Ketoconazole: 3A4 total Rev. IC₅₀ = 26 nM, 3A4
 total Irrev. IC₅₀ = 15 nM, Kinact = 0.001 min⁻¹ and
 P-gp total IC₅₀ = 5.6 μM
- Reduced fu_{ent} = 4.4% (Ref. Trevaskis-PharmRes-28-9-2176-2011)
- Clearance:
 - Paine-J. Pharmacol. Exp. Ther., 283:1552 (1997) unbound $K_{m,u} = 3.7 \mu M$ and $V_{max} = 0.977$ nmol/min/mg micro. Prot. The 1.15-fold higher clearance was used due to the Olkkola population of 7 females and 2 male subjects.
- Distribution:
 - Midazolam Lukacova default Kp calculation
 - 1-OH-midazolam reduced log P = 2.2 to calc. Kps and then ran simulation with log P = 2.57

Midazolam clinical data from: Olkkola-ClinPharmacolTherap-55-5-481-1994

Ketoconazole clinical data from: Daneshmend-Antimicrobial agents and Chemotherapy-25-1-1-1984 and Olkkola-ClinPharmacolTherap-55-5-481-1994 Ketoconazole TDI parameters from: Haarhoff-Xenobiotica-47-6-470-2017

St SimulationsPlus Cognigen | DILIsym Services | Lixoft

In vitro CYP3A Inhibition Parameters (IC_{50,t,HLM}) for Ketoconazole

474 Z. E. Haarhoff et al.

Xenobiotica, 2017; 47(6): 470-478

Table 2. Evaluation of CYP3A inhibition with HLM and CLM.

		HLM			CLM		
		$IC_{50} \ (\mu M)$		IC ₅₀ (μM)			
Inhibitor	Non-preincubation (0 min)	Preincubation (30 min)	Ratio	Non-preincubation (0 min)	Preincubation (30 min)	Ratio	
Amprenavir	0.55 ± 0.08	0.084 ± 0.025	6.5	0.3 ± 0.04	0.2 ± 0.03	1.7	
Azithromycin	>100	>100	1.0	>100	>100	1.0	
Bergamottin	>50	0.17 ± 0.04	>294.1	>50	1.3 ± 0.4	>38.5	
Buspirone	>50	15.8 ± 2.9	>3.2	>50	>50	1.0	
Cimetidine	>100	>100	1.0	>100	>100	1.0	
Clarithromycin	>50	8.2 ± 0.3	>6.1	>50	15.1 ± 0.4	>3.3	
Clozapine	>50	21.2 ± 3.7	>2.4	>50	27.2 ± 6.2	>1.8	
Cyclosporin A	24.4 ± 5.8	5.8 ± 1.0	4.2	12.0 ± 2.6	7.0 ± 1.5	1.7	
Dextromethorphan	>50	>50	1.0	>50	>50	1.0	
Diltiazem	43.5 ± 8.6	7.7 ± 1.7	5.6	30.7 ± 4.8	1.4 ± 0.4	21.9	
Erythromycin	>100	12.1 ± 3.3	>8.3	>100	54.2 ± 10.2	>1.8	
Ethynylestradiol	41.7 ± 1.7	5.2 ± 0.5	8.0	31.4 ± 1.6	4.5 ± 0.8	7.0	
Felodipine	4.1 ± 1.3	4.0 ± 0.4	1.0	4.5 ± 1.1	7.4 ± 2.2	0.6	
Fluconazole	3.2 ± 0.6	3.7 ± 0.7	0.86	6.8 ± 0.9	6.9 ± 0.6	1.0	
Fluoxetine	>50	>50	1.0	>50	>50	1.0	
Fluvoxamine	>50	>50	1.0	>50	>50	1.0	
Furafylline	>50	>50	1.0	>50	>50	1.0	
Irinotecan	>100	>100	1.0	>100	>100	1.0	
Isoniazid	>100	>100	1.0	>100	>100	1.0	
Itraconazole	0.068 ± 0.017	0.017 ± 0.006	4.0	0.12 ± 0.02	0.054 ± 0.009	2.2	
Ketoconazole	0.026 ± 0.010	0.015 ± 0.003	1.7	0.04 ± 0.006	0.056 ± 0.009	0.7	
Mibefradil	0.67 ± 0.14	0.017 ± 0.004	39.4	1.0 ± 0.2	0.17 ± 0.04	5.9	

Optimized K_{inact} = 0.001 min⁻¹ was used for irreversible inhibition

Publication supporting competitive and time-dependent inhibition by ketoconazole

Haarhoff-Xenobiotica-47-6-470-2017

Midaz. 7.5 mg PO Tab DDI vs. Keto. 400 mg QD for 4 days: Olkkola

Simulated AUC Ratio w/autoinhibition is accurate by adding: Irreversible IC₅₀ for 3A4

- Assumptions:
 - Perfusion-limited midazolam
 - Permeability-limited liver and kidney for 1-OHmidazolam
 - Ketoconazole: 3A4 total Rev. IC_{50} = 26 nM, 3A4 total Irrev. IC_{50} = 15 nM, Kinact = 0.001 min⁻¹ and P-gp total IC_{50} = 5.6 μ M
 - Reduced fu_{ent} = 4.4% (Ref. Trevaskis-PharmRes-28-9-2176-2011)
 - Clearance:
 - Paine-J. Pharmacol. Exp. Ther., 283:1552 (1997) unbound $K_m = 3.7 \mu M$ and $V_{max} = 0.977$ nmol/min/mg micro. Prot. The 1.15-fold higher clearance was used due to the Olkkola population of 7 females and 2 male subjects.
- Distribution:

Model-Informed Drug Developr

- Midazolam Lukacova default Kp calculation
- 1-OH-midazolam reduced log P = 2.2 to calc. Kps and then ran simulation with log P = 2.57

Midazolam clinical data from: Olkkola-ClinPharmacolTherap-55-5-481-1994

Ketoconazole clinical data from: Daneshmend-Antimicrobial agents and Chemotherapy-25-1-1-1984 and Olkkola-ClinPharmacolTherap-55-5-481-1994 Ketoconazole TDI parameters from: Haarhoff-Xenobiotica-47-6-470-2017

St SimulationsPlus Cognigen | DILIsym Services | Lixoft

Outline of Process for Model Development and Documentation

- Creation of GP a project starts with structure import using ADMET Predictor Module for both substrates and perpetrators.
 - Physicochemical, biopharmaceutical, and biochemical properties
 - Initial evaluation via "Chemistry Classification" with all aspects of ADMET
 - Solubility vs. pH, dissolution, absorption (w/ influx and efflux transporters), clearance (metabolic, biliary, and renal), distribution, excretion, and toxicity.
 - Extensive literature collection and spreadsheet documentation.
 - Workbook with multiple sheets for Physicochemical, Metabolic, Transporter, Preclinical, and Clinical single compound and DDI study data for multiple perpetration mechanisms.
 - First simulations for "Measured Properties" with parameter sensitivity analysis.
 - Model building for individual substrate and/or perpetrator simulations compared to observed data for single escalating doses (for nonlinear dose dependence), multiple dosing (for autoinhibition / autoinduction).
 - DDI simulations for all appropriate mechanisms on both substrate and perpetrator.
 - Analysis of results using the "Guest"^{*} criterion for different levels of accuracy cutoff for increasing AUC (inhibition) and decreasing AUC (induction).
 - Preparation of slides and written reports suitable for regulatory submission.

Newer DDI Module with "Validated" Field đ × [Drug-Drug Interaction Predictions File Current Compound Interacting Compounds Options Help Prediction Type Simulation Mode Run <u>B</u>aseline **Run Full Simulation** Close © Steady-State Prediction Single Sim O Pop Sim O DILIsym Ovnamic Simulation Simulation Interacting Compound(s): "Standard SS MBB 2021-02-19.mdb Show Notes for Interacting GEM PO 600 mg DDI Repag Tornio Perpetrator ► H -Iđ Compound Perpetrator Parameters Inh/Ind Inh/Ind kinact In Vitro ln vitro F 个 Enz / 3 Add Enz/Trans [min-1] Select Validated Inh/Ind Const Type Const Const In Vitro Fu Type Perpetrator Trans [mg/mL] Value Units /Emax Gem Gluc EC Kps Tornio OATP1B1 7.6 uМ ব 0.5 Ki-rev-in vitro, U 0 True -1 Unknown OATP1B1 14 0.5 Gem Gluc EC Kps Tornio IC50-rev-in vitro. U uМ 0 False -1 Unknown Г 4 Delete Gem Gluc EC Kps Tornio OATP1B3 IC50-rev-in vitro. U 74 uМ 0 Г False -1 Unknown 0.5 Enz/Trans 2 GEM PO 600 mg DDI Repag Tornio 2C8 30.4 uМ 0 0.826 Calc(Hallifax)-HLM 0.5 Ki-rev-in vitro, T True 2C8 GEM PO 600 mg DDI Repag Tornio IC50-rev-in vitro. T 120 0 False 0.826 Calc(Hallifax)-HLN 0.5 uМ 2C9 GEM PO 600 mg DDI Repag Tornio IC50-rev-in vitro. T 30 uМ 0 False 0.826 Calc(Hallifax)-HLN 0.5 GEM PO 600 mg DDI Repag Tornio 2C9 Ki-rev-in vitro, U uМ 0 False Unknown 0.5 4 -1 ন 2C9 5.8 uМ 0 0.826 Calc(Hallifax)-HLN 0.5 GEM PO 600 mg DDI Repag Tornio Ki-rev-in vitro, 1 True CEN DO COO DDLD 0 lo.c NTOD ICTO. 00 ... **F** 1 -11.1 • Dosing Information -Rate Constants [1/h] Dose [mq]: Int [h]: 12 CL [L/h]: 11.228 1600 ka: kel: 0.98989 Reference nteracting Compound Information PK model: HumAmeMalHlthy28YO_79kg_24BMI-Tornio ACAT model: Hum Phys Fasted Tornio Model-Informed Drug Iptional Settings: Show RELEVANT Interacting Cmpds Recognize Enzyme Families: ON Total-Unbound Ki Conversion: ON JunuavionsPlus 2021 Virtual Conference Cognigen | DILIsym Services | Lixoft

Repaglinide PO 2.5 mg on Day 3 after 5 doses of GEM 600 mg PO

Ki values selected are:

- 1.) 12.5 uM for OATP1B1 (Gemfibrozil parent)
- 2.) 7.6 uM for OATP1B1 (Glucuronide)
- 3.) 30.4 uM for the CYP2C8 (Reversible) for the parent and
- 4.) 20 uM for Irrev inhibition and Kinact= 0.21 min⁻¹ of CYP2C8 for the Glucuronide
- 5.) 3.4 uM for the OAT3 (Rev inhibition) for the parent and
- 6.) 9.9 uM for the OAT3 (Rev inhibition) Glucuronide
- 7.) 5.8 uM for the CYP2C9 (Rev Inhibition) by Parent

Repaglinide record: Repaglinide_PO_0.25mg_Gem 600 mg GEM Record:GEM PO 600 mg DDI Repag Tornio GEM-Gluc record: Gem-Gluc EC Kps Tornio Gemfibrozil was dosed with DDI module (600 mg, BID dosing interval) Observed data for GEM and GEM gluc and Repaglinide before and after DDI in the plot is from Tornio et. al., 2008

Tornio et. al., Clin. Pharmacol. Thera. 84(3):403(2008)

ST SimulationsPlus Cognigen | DILIsym Services | Lixoft

Outline of Process for Model Development and Documentation

- Creation of GP a project starts with structure import using ADMET Predictor Module for both substrates and perpetrators.
 - Physicochemical, biopharmaceutical, and biochemical properties
 - Initial evaluation via "Chemistry Classification" with all aspects of ADMET
 - Solubility vs. pH, dissolution, absorption (w/ influx and efflux transporters), clearance (metabolic, biliary, and renal), distribution, excretion, and toxicity.
 - Extensive literature collection and spreadsheet documentation.
 - Workbook with multiple sheets for Physicochemical, Metabolic, Transporter, Preclinical, and Clinical single compound and DDI study data for multiple perpetration mechanisms.
 - First simulations for "Measured Properties" with parameter sensitivity analysis.
 - Model building for individual substrate and/or perpetrator simulations compared to observed data for single escalating doses (for nonlinear dose dependence), multiple dosing (for autoinhibition / autoinduction).
 - DDI simulations for all appropriate mechanisms on both substrate and perpetrator.
 - Analysis of results using the "Guest"^{*} criterion for different levels of accuracy cutoff for increasing AUC (inhibition) and decreasing AUC (induction).
 - Preparation of slides and written reports suitable for regulatory submission.

Eleanor J. Guest et al. DMD, 39(2):170 (2011)

where δ is a parameter that accounts for variability. If $\delta = 1$, there is no variability and limits revert to those defined by eq. 3. If $\delta = 1.25$ and R_{obs} =

1, then the limits on R are between 0.80 and 1.25, corresponding to the

conventional 20% limits used in bioequivalence testing (United States Food

and Drug Administration, 2003). Note that these limits are symmetrical on the

FIG. 1. Schematic graph displaying the limits of the different predictive measures; the traditional two-fold predictive measure (dashed lines) and the proposed new predictive measure (dotted lines). Observed AUC ratios include both induction and inhibition DDIs.

St Simulations Plus Cognigen | DILIsym Services | Lixoft

10

Midazolam DDI vs. Fluconazole

			Variability	1.25	Guest Lin	nits				log Limits		
		Obs Ratio	Variability (CV)	Limit	Upper	Lower	Unity	2-fold(+)	2-fold(-)	UL	ш	Center
_	of	0.10	1.25	1.93	0.19	0.05	0.10	0.20	0.05	-0.28	0.28	0
	7 5	0.13	1.25	1.91	0.24	0.07	0.13	0.25	0.06	-0.28	0.28	0
	0 2	0.25	1.25	1.81	0.45	0.14	0.25	0.50	0.13	-0.26	0.26	0
	at ci	0.33	1.25	1.75	0.58	0.19	0.33	0.67	0.17	-0.24	0.24	0
	<u>م</u>	0.50	1.25	1.63	0.81	0.31	0.50	1.00	0.25	-0.21	0.21	0.00
		1.00	1.25	1.25	1.25	0.80	1	2.00	0.50	0.10	-0.10	0
		2.00	1.25	1.63	3.25	1.23	2	4.00	1.00	0.21	-0.21	0
_		3.00	1.25	1.75	5.25	1.71	3	6.00	1.50	0.24	-0.24	0
		4.00	1.25	1.81	7.25	2.21	4	8.00	2.00	0.26	-0.26	0
		8.00	1.25	1.91	15.25	4.20	8	16.00	4.00	0.28	-0.28	0
		10.00	1.25	1.93	19.25	5.19	10	20.00	5.00	0.28	-0.28	0

Guest Cr	iteria for K	i = 15 uM			Guest Cr	riteria for Ki	= 15 uM		
cv	Limit	Up Lim	Low Lim	Predicted	cv	Limit	Up Lim	Low Lim	Predicted
Cmax					AUCO-t				
1.25	1.67	3.84	1.37	2.07	1.25	1.80	6.70	2.07	3.69
1.25	1.58	2.82	1.13	1.86	1.25	1.78	6.13	1.93	3.23
1.25	-	-	-	-	1.25	1.57	2.73	1.11	1.79
Guest Cri	iteria for Ki	i = 7.4 uM			Guest Cr	iteria for Ki	= 7.4 uM		
CV	Limit	Up Lim	Low Lim	Predicted	CV	Limit	Up Lim	Low Lim	Predicted
Cmax					AUC0-t				
1.25	1.67	3.84	1.37	2.57	1.25	1.80	6.70	2.07	6.19
1.25	1.58	2.82	1.13	2.32	1.25	1.78	6.13	1.93	5.50
1.25									

Model-Informed Drug Developmen

2021 Virtual Confe

St SimulationsPlus Cognigen | DILIsym Services | Lixoft

Outline of Process for Model Development and Documentation

- Creation of GP a project starts with structure import using ADMET Predictor Module for both substrates and perpetrators.
 - Physicochemical, biopharmaceutical, and biochemical properties
 - Initial evaluation via "Chemistry Classification" with all aspects of ADMET
 - Solubility vs. pH, dissolution, absorption (w/ influx and efflux transporters), clearance (metabolic, biliary, and renal), distribution, excretion, and toxicity.
 - Extensive literature collection and spreadsheet documentation.
 - Workbook with multiple sheets for Physicochemical, Metabolic, Transporter, Preclinical, and Clinical single compound and DDI study data for multiple perpetration mechanisms.
 - First simulations for "Measured Properties" with parameter sensitivity analysis.
 - Model building for individual substrate and/or perpetrator simulations compared to observed data for single escalating doses (for nonlinear dose dependence), multiple dosing (for autoinhibition / autoinduction).
 - DDI simulations for all appropriate mechanisms on both substrate and perpetrator.
 - Analysis of results using the "Guest"^{*} criterion for different levels of accuracy cutoff for increasing AUC (inhibition) and decreasing AUC (induction).
 - Preparation of slides and written reports suitable for regulatory submission.

Written Report of Model Development and Validations

ne Simulations of Sensi rameters of Triazolam	tive CYP3A4 Su and Midazolam	ıbstrates: Simu	lated Versus	s Observed
Substrate Dose	Obs	erved#	Sir	nulated
and Regimen	Cmax (ng/mL)	AUC _{0-t} (ng*hr/mL)	Cmax (ng/mL)	AUC _{0-t} (ng*hr/mL)
1994) 0.25 mg single dose triazolam tablet	1.5 ± 0.2	5.9 ± 0.7	1.49	8.86
al. 0.25 mg single dose triazolam tablet	2.6±0.3	$10.6 \pm 1.6^{\$}$	1.82	11.06\$
al. 7.5 mg PO midazolam	22 ± 6	65±10\$	25	82.99\$
om the average of individu imulations of Sensitive teters of Triazolam and onazole	al values, and repro CYP3A4 Substr I Midazolam <u>Wi</u>	esent mean ± stan rates: Simulated <u>th</u> or Without (dard error; ^s re d Versus Ob Co-administ	present AUC _{0-inf} served PK ration of
Substrate		Cmax (ng/mL)	AUC _{0-t} (ng	;*h/mL)
Triazolam Obser	ved baseline#	1.5 ± 0.2	5.	9±0.7
Simul	ated baseline	1.49		8.86
Obse	erved DDI #	4.6 ± 0.5	48.	.1 ± 5.3
Sim	ulated DDI	4.24	4	55.82
	ne Simulations of Sensi rameters of Triazolam Substrate Dose and Regimen 1994) 0.25 mg single dose triazolam tablet al. 0.25 mg single dose triazolam tablet al. 7.5 mg PO midazolam om the average of individu imulations of Sensitive teters of Triazolam and onazole Substrate Triazolam Obser Simul Obser	In Simulations of Sensitive CYP3A4 Surameters of Triazolam and Midazolam Substrate Dose and Regimen Obs 1994) 0.25 mg single 1.5 \pm 0.2 dose triazolam tablet 1.5 \pm 0.2 dose triazolam tablet al. 0.25 mg single 2.6 \pm 0.3 dose triazolam tablet 2.6 \pm 0.3 dose triazolam tablet al. 7.5 mg PO 22 \pm 6 midazolam 22 \pm 6 midazolam commutations of Sensitive CYP3A4 Substrate Substrate Substrate Observed baseline [#] Simulated baseline Observed DDI [#]	Simulations of Sensitive CYP3A4 Substrates: Simulations of Triazolam and Midazolam. Substrate Dose and Regimen Observed# Simulations of Sensitive CYP3A4 Substrates: Simulations of sensitive CYP3A4 Substrates: Simulated al. 0.25 mg single al. 1.5 ± 0.2 5.9 ± 0.7 1994) 0.25 mg single al. 1.5 ± 0.2 5.9 ± 0.7 1994) 0.25 mg single al. 2.6 ± 0.3 10.6 ± 1.6^3 dose triazolam tablet 10.6 ± 1.6^3 10.6 ± 1.6^3 al. 0.25 mg single al. 2.6 ± 0.3 10.6 ± 1.6^3 midazolam 00 are triazolam tablet 10.6 ± 1.6^3 10.6 ± 1.6^3 al. 7.5 mg PO al. 22 ± 6 65 ± 10^5 10.6 ± 1.6^3 midazolam 00 triazolam and Midazolam With or Without Obrazole With or Without Obrazole Substrate Cmax (ng/mL) Cmax (ng/mL) Triazolam Observed baseline# 1.5 ± 0.2 Simulated baseline 1.49 Observed DDI # 4.6 ± 0.5	In Simulations of Sensitive CYP3A4 Substrates: Simulated Versus rameters of Triazolam and Midazolam. Substrate Dose and Regimen Observed# Simulated Versus (ng/mL) Substrate Dose and Regimen Observed# Simulated Versus (ng/mL) 1994) 0.25 mg single 1.5 \pm 0.2 5.9 \pm 0.7 1.49 dose triazolam tablet al. 0.25 mg single 2.6 \pm 0.3 10.6 \pm 1.6 ^{\$} 1.82 dose triazolam tablet 0.25 mg single 2.6 \pm 0.3 10.6 \pm 1.6 ^{\$} 1.82 al. 0.75 mg PO 22 \pm 6 65 \pm 10 ^{\$} 25 midazolam 00 set riazolam and represent mean \pm standard error; ^{\$} re imulations of Sensitive CYP3A4 Substrates: Simulated Versus Obteters of Triazolam and Midazolam With or Without Co-administ conazole Substrate Cmax (ng/mL) AUC _{0+t} (ng Triazolam Observed baseline# 1.5 \pm 0.2 5.5 Simulated baseline 1.49 0 0 Observed DDI # 4.6 \pm 0.5 48 0 Simulated DDI 4.24 5 5

		Simulated DDI	4.24	55.82
		Observed DDI ratio#	3.07	8.1
		Simulated DDI ratio	2.85	6.3
(Greenblatt, Wright	Triazolam	Observed baseline#	2.6 ± 0.3	10.6 ± 1.6 ^{\$}
et al. 1998)		Simulated baseline	1.82	11.06\$
		Observed DDI #	5.4 ± 0.4	145.4 ± 39.1 ^{\$}
		Simulated DDI	4.71	142.6\$
		Observed DDI ratio#	2.1	13.7\$
		Simulated DDI ratio	2.59	12.9 ^{\$}
(Olkkola, Backman	Midazolam	Observed baseline#	22 ± 6\$	65±10\$
et al. 1994)		Simulated baseline	25	82.99 ^{\$}
		Observed DDI#	90 ± 7	1033.3\$
		Simulated DDI	96	1300.7\$
		Observed DDI ratio	4.09	15.9 ^{\$}
		Simulated DDI ratio	3.84	15.7 ^{\$}
-				

*Parameters are from the average of observed individual values and represent mean ± standard error; ^srepresent AUC_{0-inf}, the simulated DDI ratios were highlighted in green while observed DDI ratios were highlighted in blue.

St SimulationsPlus Cognigen | DILlsym Services | Lixoft

Conclusions

- The GP DDI Standard Update Project Team have made significant advances in the ability to simulate complex mechanistic drug-drug interactions involving enzymes, transporters, and enterohepatic circulation.
- Now DDI simulations will be accomplished with a full database of validation study records for both substrates and perpetrators
- We provide extensive literature references, data compilation, slides, and written documentation and GastroPlus model files that can be used for regulatory submissions
- When documentation is in a complete draft form, all components are scientifically reviewed and formatted as a complete package for regulatory review of novel compound results.
- All complete models will be available for download by registered GP license holders.

Acknowledgements

DDI Task Force

Revathi Chapa Tarang Vora **Georgy Hartman** Joyce Macwan Naveed Shaik Grace Fraczkiewicz Yujuan Zheng Jin Dong Saima Subhani Suvarchala Avvari **Jeremy Perrier** Model-Informed Drug Developme

Simulation Technologies Team

Haiying Zhou (TL) Jim Mullin Ke Xu Szeto Jessica Spires Maxime Le Merdy Manas Shah

With support from:

Viera Lukacova, Ph.D. (Chief Scientist) Neil Miller (VP Simulation Sciences) Andrew Mueller (Project Management) <u>Arlene Padron (Corp. Marketing Director)</u>

and other teams at Simulations Plus:

Computational Technologies Consulting Studies Cheminformatics

St SimulationsPlus Cognigen | DILIsym Services | Lixoft Model-Informed Drug Development

2021 Virtual Conference

Learn More! www.simulations-plus.com

