#### Model-Informed Drug Development

### **2021 Virtual Conference**

## **Revisiting MUT\_RISK in ADMET Predictor®**

Pankaj R. Daga & Robert D. Clark



# Mutagenicity

• A mutagen is a physical or chemical agent that changes the genetic material, usually DNA, thus increasing the frequency of mutations



#### **OECD Guidelines TG471**

- A substance must be tested in a minimum of five strains with and/or without a mammalian liver homogenate preparation (S9) :
  - <u>TA98</u>;
  - <u>TA100</u>;
  - <u>TA1535</u>
  - any one of <u>TA1537</u>, <u>TA97</u> or <u>TA97a</u>
  - any one of <u>TA102</u>, <u>WP2 uvrA</u>, or <u>WP2 uvrA</u>
    <u>pKM101</u>





## **Mutagenesis Models in ADMET Predictor**

### **Individual Strain Models**

- Eleven Mutagenesis models present in AP-X
  - Five strains (with and without S9 fractions)
  - One model based on NIHS dataset
- Output is

#### **Positive vs Negative**





- A qualitative estimate of overall mutagenicity by combining individual positive predictions
- Range: 0.0 3.0
- ~89% of the cmpds from WDI subset have MUT\_RISK less than 1





# Why MUT\_RISK?

#### In a regulatory context, a compound "fails" the Ames test if a positive result is obtained for any strain

| Structure          | Identifier  | MUT_Risk | MUT 97+1537 | MUT m97+1537 | <u>MUT 98</u> | MUT m98  | MUT 100  | <u>MUT m100</u> | MUT 102+wp2 | MUT m102+wp2 | <u>MUT 1535</u> | <u>MUT m1535</u> | MUT NIHS |          |
|--------------------|-------------|----------|-------------|--------------|---------------|----------|----------|-----------------|-------------|--------------|-----------------|------------------|----------|----------|
|                    | RIFAMYCIN   |          | Positive    | Positive     | Negati        | Negative | Negative | Negative        | Negative    | Negative     | Negative        | Negative         | Negative |          |
| ఇం <sup>మరు,</sup> | PRAZOSIN    |          | Negative    | Negative     | Positive      | Negative | Negative | Negative        | Negative    | Negative     | Negative        | Negative         | Positive |          |
| ~`~```````         | ALBENDAZOLE |          |             | Negative     | Negative      | Negati   | Negative | Negative        | Negative    | Positive     | Positive        | Negative         | Negative | Negative |
| of C.              | ONDANSETRON |          |             | Negative     | Negative      | Negati   | Positive | Negative        | Positive    | Negative     | Negative        | Negative         | Negative | Negative |
| <u>کې</u> د.       | NIFEDIPINE  |          | Negative    | Negative     | Negati        | Negative | Positive | Negative        | Negative    | Negative     | Negative        | Negative         | Positive |          |
|                    | CISAPRIDE   |          | Negative    | Negative     | Negati        | Negative | Positive | Negative        | Negative    | Negative     | Negative        | Negative         | Positive |          |
|                    | Folic-Acid  |          | Negative    | Negative     | Negati        | Negative | Negative | Negative        | Positive    | Negative     | Negative        | Negative         | Negative |          |
|                    | WARFARIN    |          | Negative    | Negative     | Negati        | Negative | Negative | Negative        | Negative    | Positive     | Negative        | Negative         | Negative |          |
|                    | SUCROSE     |          | Negative    | Negative     | Negati        | Negative | Negative | Negative        | Negative    | Negative     | Negative        | Negative         | Positive |          |

MUT\_Risk score <= 1 helps to "save" compounds from being labeled toxic

Model-Informed Drug Develo

2021 Virtual Conference

Cognigen | DILIsym Services | Lixoft

ations**Plus** 

# How Do We Calculate MUT\_RISK?

|      |     |               |      |           |       |     |      | 1    |      |       | - X-         |
|------|-----|---------------|------|-----------|-------|-----|------|------|------|-------|--------------|
| S_97 | 0.6 | MUT_97+1537   | =    | Positive  |       |     |      |      |      |       |              |
| m_97 | 0.6 | MUT_m97+1537  | 1    | = Positiv | re    | AND | MUT_ | 97+1 | 537  | =     | Negative     |
| S_98 | 0.3 | MUT_98 =      | Posi | tive      |       |     |      |      |      |       |              |
| m_98 | 0.3 | MUT_m98 =     | Posi | tive AND  | ) MUT | 98  | =    | Nega | tive | è     |              |
| s100 | 0.3 | $MUT_{100} =$ | Posi | tive      | _     | _   |      |      |      |       |              |
| m100 | 0.3 | MUT m100      | =    | Positive  | AND   | MUT | 100  | =    | Nega | ative | <del>j</del> |
| S102 | 0.6 | MUT 102+wp2   | =    | Positive  |       | _   | _    |      |      |       |              |
| m102 | 0.6 | MUT_m102+wp2  | 2    | = Positiv | re    | AND | MUT  | 102+ | wp2  | =     | Negative     |
| S535 | 0.6 | MUT 1535      | =    | Positive  |       |     |      | -    |      |       |              |
| m535 | 0.6 | MUT_m1535     | =    | Positive  | AND   | MUT | 1535 | 5    | =    | Nega  | tive         |
| NIHS | 0.6 | MUT_NIHS      | =    | Positive  |       | -   | _    |      |      |       |              |
|      |     |               |      |           |       |     |      |      |      |       |              |

- Each individual "Mutagenic" prediction contributes <u>0.6</u> "vote" to the score
- The models and their errors are not mutually independent
- Results of TA98 and TA100 tests overlap mechanistically and hence vote of 0.3









- 7th International Workshop on Genotoxicity Testing
- November 8-10 2017
- National Cancer Centre, Japan



Mutat Res Gen Tox En 848 (2019) 503081

ELSEVIER

Contents lists available at ScienceDirect

Mutat Res Gen Tox En

journal homepage: www.elsevier.com/locate/gentox

Are all bacterial strains required by OECD mutagenicity test guideline TG471 needed?



Special Issue on IWGT

Meeting Report, (Published

in December 2019

Richard V. Williams<sup>a,\*</sup>, David M. DeMarini<sup>b</sup>, Leon F. Stankowski Jr.<sup>c</sup>, Patricia A. Escobar<sup>d</sup>, Errol Zeiger<sup>e</sup>, Jonathan Howe<sup>f</sup>, Rosalie Elespuru<sup>g</sup>, Kevin P. Cross<sup>h</sup>





## **Do We Need to Update Test Guidelines?**

Of the mutagens detected by the full TG471 strain panel, TA100 93 % were mutagenic in either TA98 and/or TA100

TA100 is derived from TA1535; detects more mutagens than TA1535. TA100 alone would suffice TA97, TA102, and WP2*uvrA* <u>could be removed</u> from OECD TG471 with little, if any, loss of sensitivity





# **Proposed MUT\_RISK Changes**

- Contribution of individual "Mutagenic" prediction needs to be updated
  - TA97 and TA102 could be given lower weights
  - TA100, TA98 and TA1535 deserve higher weights
- Interactions amongst TA98, TA100 and TA1535 results should be considered
  - All positive to get higher score
  - Either one positive to get relatively lower score
- Independent external test set compiled by Hansen et al.
  - NO manual intervention involved



# Proposed MUT\_RISK

| 1 | S 97        | 0.35 | MUT 97+153    | 7 =  | Positiv | е     |      |       |       |       |       |            |
|---|-------------|------|---------------|------|---------|-------|------|-------|-------|-------|-------|------------|
| 2 | m 97        | 0.20 | MUT m97+15    | 37   | = Pos   | itiv€ | Э    | AND   | NOT   | MUT   | 97+3  | 1537 =     |
| 3 | S 98        | 1.06 | MUT 98 =      | Posi | itive   | AND   | (    | MUT   | 100   | =     | Nega  | ative      |
| 4 | m 98        | 0.70 | MUT_m98 =     | Pos  | itive   | AND   | MUT  | 98    | =     | Nega  | ative | e A        |
| 5 | S100        | 1.01 | $MUT_{100} =$ | Pos  | itive   | AND   | (    | MUT   | 98    | =     | Nega  | ative      |
| 6 | m100        | 0.86 | MUT_m100      | =    | Positiv | е     | AND  | MUT   | 100   | =     | Nega  | ative      |
| 7 | S102        | 0.11 | MUT_102+wp    | 2 =  | Positiv | е     |      |       |       |       |       |            |
| 8 | m102        | 0.13 | MUT_m102+w    | rp2  | = Pos   | itive | Э    | AND   | MUT   | _102- | +wp2  | = 1        |
| 9 | S535        | 0.70 | MUT_1535      | =    | Positiv | е     | AND  | (     | MUT   | _100  | =     | Negat      |
| 0 | m535        | 0.40 | MUT_m1535     | =    | Positiv | е     | AND  | MUT_  | _1535 | 5     | =     | Negat      |
| 1 | NIHS        | 0.37 | MUT_NIHS      | =    | Positiv | е     |      |       |       |       |       |            |
| 2 | S_cl        | 1.17 | $MUT_{100} =$ | Posi | itive   | AND   | MUT_ | 98    | =     | Pos   | itiv  | e A        |
| 3 | <u>m_c1</u> | 1.21 | MUT_m98 =     | Posi | itive   | AND   | MUT_ | _m10( | )     | =     | Pos   | itive      |
| 4 | S_c2        | 0.92 | MUT_98 =      | Posi | itive   | AND   | MUT_ | 1535  | 5     | =     | Pos   | itive      |
| 5 | <u>m_c2</u> | 0.75 | MUT_m98 =     | Posi | itive   | AND   | MUT_ | m153  | 35    | =     | Pos   | itive      |
| 6 | S_c3        | 1.23 | $MUT_{100} =$ | Posi | itive   | AND   | MUT_ | 153   | 5     | =     | Pos   | itive      |
| 7 | m_c3        | 0.97 | MUT_m100      | =    | Positiv | е     | AND  | MUT   | _m153 | 35    | =     | Posit      |
| 8 | S_c4        | 1.21 | $MUT_{100} =$ | Posi | itive   | AND   | MUT_ | 98    | =     | Pos   | itiv  | e <i>I</i> |
| 9 | m c4        | 1.17 | MUT m1535     | =    | Positiv | е     | AND  | MUT   | m98   | =     | Pos   | itive      |



20

## **Performance on Hansen Dataset**

10

## MUT\_RISK\_10 Prediction

## MUT\_RISK\_11 Prediction

Sensitivity = 0.804; Specificity = .0670 MCC = 0.480: Youden = 0.486: False Rate = 0.257



Model-Ir

Sensitivity = 0.813; Specificity = 0.740 MCC = 0.556; Youden = 0.558; False Rate = 0.220



Cognigen | DILlsym Services | Lixoft

## Comparison of Two MUT\_RISK Models

203 Positive cmpds were labeled "<u>safe</u>" by MUT\_RISK\_10. MUT\_RISK\_11 could identify them correctly



293 Negative cmpds were flagged "<u>mutagenic</u>" by MUT\_RISK\_10. MUT\_RISK\_11 could save them correctly



## Performance on WDI Subset

#### Hand-curated Subset (2269 cmpds) of World Drug Index used for analysis





89% cmpds are labeled safe with new MUT\_RISK\_11 in contrast to only 85% by older MUT\_RISK\_10



SI SimulationsPlus Cognigen | DILIsym Services | Lixoft

## Conclusion

- Consolidation of results from various strains in a single RISK factor provides better prediction of mutagenicity of small molecules than individual models
- Latest IWGT meeting report suggested relative importance of various strains in Mutagenicity
- Newly proposed MUT\_RISK is found to perform better in identifying toxic compounds than existing MUT\_RISK





**Questions & Answers** 

Model-Informed Drug Development





pankaj@simulations-plus.com



Learn More! www.simulations-plus.com

SI SimulationsPlus Cognigen | DILIsym Services | Lixoft