Model-Informed Drug Development

2021 Virtual Conference

Predicting optimal scheduling of drug combinations in lung cancer xenografts using a population PK/PD model

Pauline Traynard

SE SimulationsPlus Cognigen | DILIsym Services | Lixoft

Introduction

Case study based on data published and modeled in:

- Imbs et al. (2018). Revisiting Bevacizumab + Cytotoxics Scheduling Using Mathematical Modeling: Proof of Concept Study in Experimental Non-Small Cell Lung Carcinoma. *CPT: PSP.*
- Schneider et al. (2019). Optimal Scheduling of Bevacizumab and Pemetrexed/Cisplatin Dosing in Non-Small Cell Lung Cancer. *CPT: PSP*.

Context:

- Bevacizumab-pemetrexed/cisplatin is a first-line therapeutic for advanced nonsquamous non-small cell lung cancer.
- Bevacizumab potentiates pemetrexed/cisplatin (chemotherapy) cytotoxicity by inducing transient tumor vasculature normalization.
- The increase in neoplasm vascular quality because of bevacizumab typically occurs within a **period of a few days** after administration.

Goal of the study:

Estimate the optimal gap between administration of bevacizumab and chemotherapy to reach full cytotoxicity activation

Workflow

Data exploration

- Longitudinal data from 77 xenografts
- Different dosing schedules

Population modeling in Monolix

 Stepwise development of a tumor growth inhibition model for combination therapy

Ľ

-

Simulations in Simulx

Predict optimal time gap for cytotoxicity activation

Data exploration

Data exploration

Data for **control group** in log scale

 \rightarrow Choice of tumor growth model:

- Not exponential nor linear models
- No clear carrying capacity

Data exploration

Data for **Chemo** group: treatment effect is small, and seems delayed

Data for **all groups except Control**: bevacizumab seems to make a difference with concomitant administration and 3-days gap, but not with 8-days gap

Model-Informed Drug Developmen

Development of a tumor growth inhibition model for combination therapy with Monolix

Modeling workflow

Tumor growth model estimated on Control group

. Tumor growth inhibition model for chemotherapy estimated on **Chemo group**

. Tumor growth inhibition model for combination of chemotherapy and bevacizumab estimated on **all groups**

Model-Informed Drug Development

Modeling workflow

Tumor growth model estimated on Control group

Use last estimates

2. Tumor growth inhibition model for chemotherapy estimated on **Chemo group**

Use last estimates

3. Tumor growth inhibition model for combination of chemotherapy and bevacizumab estimated on **all groups**

ST SimulationsPlus Cognigen | DILIsym Services | Lixoft

Tumor growth model

C r01_TGI_trtcomb	.mlxtran* - Monolix estimatio	on - 2020R1					-	o ×				
Project S	ettings Export	Help						() 2				
🕋 Data	Structural model	nitial estimates Sta	tistical model & Task	s Results Plots				P				
РК		Shortcuts To Commonly Used Models										
PD	Claret exponential	Simeoni	Stein	Wang	Bonate	Ribba	TwoP	opulation				
РКРО	Initial Tum	or Size Ki	netics	Model	Additional Fea	ture 1	reatm	ent				
PK Double	As parameter	No satura	ition I	Logistic	None	None	•					
Absorption	As regressor	Saturatio	n (Generalized Logistic	Angiogenesis	PK m	odel					
TMDD				Simeoni-Logistic Hybrid	Immune Dynamics	Expo	sure as reg	gressor				
TTE				Gompertz		Treat	ment star	t at t=0				
Count				Exponential-Gompertz		Treat	ment star	t time as				
TGI			١	/on Bertalanffy		No tr	eatment (0) vs				
				Generalized Von Bertalanffy		treat	ment (1) re	egressor				
	Q						CLE	AR FILTERS				
	TG_ExpGomp_No	oFeat_TS0par 🛛 🔁										
	TG_ExpGomp_No	Feat_TS0reg 🛃										
	TG_GenLogi_NoF	eat_TS0par 🛛 🔁										
	TG_GenLogi_NoF	eat_TS0reg										
	TG_GenVB_NoFea	at_TS0par 🛛 🔁										
	Records per page: 10 Showing 1 to 14 of 14	14 entries						CANCEL				

2021 Virtual Conference

→ The TGI library makes it easy to test different hypotheses...

S SimulationsPlus Cognigen | DILIsym Services | Lixoft

Tumor growth model

... and compare them in Sycomore

Project name	Hierarchy									
All I None 1	Add all Clean	Actions	Rating 1	-2*LL (Lin) ↓↑	-2*LL (IS) ↓↑	BICc (Lin) ↓↑	BICc (IS) ↓≞	Structural model	Observation model	Individual model 🚯
r01_explin	•	× D C M/B	***		2452.91		2486.37	TG_ExponentialLinea r.txt	y1: comb1	TSO kp kpl
r02_Simeoni	0	× D C M/CB	***		2453.14		2486.61	TG_Simeoni.txt	y1: comb1	TSO kp kpl <i>psi</i>
r09_Koch	0	× D C M/C B	***		2454.38		2487.85	TG_Koch.txt	y1: comb1	TSO kp kpl
r03_logis	C	× D C M/C B	***		2459.86		2493.33	TG_Logistic.txt	y1: comb1	TS0 kp TSmax
r06_SimeoLogis	0	× D C M/C B	***		2452.97		2494.22	TG_Hybrid.txt	y1: comb1	TSO kp kpl <i>psi</i> TSmax
r04_Gomp	0	×DCMB	***		2465.95		2499.42	TG_GompertzTSma x.txt	y1: comb1	TS0 beta TSmax
r05_genLogis	0	× O CM/B	***		2458.89		2500.13	TG_GenLogistic.txt	y1: comb1	TSO kp TSmax gamma
r08_GenVonBertalanffy	0	× O C MB	***		2466.74		2507.99	TG_GenVonBertalanf fy.txt	y1: comb1	TSO kp kd gamma
r07_VonBertalanffy	0	×DCMB	***		2578.32		2611.79	TG_VonBertalanffy.tx t	y1: comb1	TSO kp kd

The exponential-linear (or Simeoni) model with a sharp switch between exponential and linear phases gives the best results

 \rightarrow

St SimulationsPlus

linear

Koch

Tumor growth inhibition model

Possible inhibition model for the effect of chemotherapy:

Killing hypothesis:

- Log-kill
- Norton-Simon

Dynamics:

- First-order
- Michaelis-Menten
- Hill
- Exponential

Delay:

- Cell distribution
- Signal distribution

➔ 16 combinations

Claret exponential	Simeoni	Stein	Wa	ing	Bonate	Ribba	TwoPopulation
Initial Tumor Siz	:e	Kinetics	Мо	del	Additional Feat	ture	Treatment
As parameter	No sa	turation	Linear		None		None
As regressor	Satur	ation	Quadratic		Immune Dynamics		PK model
			Exponential				Exposure as regressor
			Generalized E	kponential			Treatment start at t=0
			Exponential-li	near			Treatment start time as regressor
			Simeoni				No treatment (0) vs
			Koch				treatment (1) regressor
Killing Hypoth	nesis	Dynami	cs	Re	sistance		Delay
Log-kill		First-order		Claret expone	ntial	Signa	distribution
Norton-Simon		Michaelis-Menten		Resistant cells		Cell d	istribution
		Michaelis-Menten Hill		None		None	
		Exponential Kill					
۹							CLEAR FILTERS
G_Sim_NoFeat_TS0par_T	GI_PKmod_L	K_1stOrd_NoRes_CD_No	Feat 🛃				
G_Sim_NoFeat_TS0par_T	GI_PKmod_L	K_1stOrd_NoRes_NoDel_	NoFeat 🛃				
G_Sim_NoFeat_TS0par_T	GI_PKmod_L	K_1stOrd_NoRes_SD_NoF	eat 🛃				
G_Sim_NoFeat_TS0par_T	GI_PKmod_L	K_Exp_NoRes_CD_NoFea	t 🛃				
G_Sim_NoFeat_TS0par_T	GI_PKmod_L	K_Exp_NoRes_NoDel_No	Feat 🛃				
G_Sim_NoFeat_TS0par_T	GI_PKmod_L	K_Exp_NoRes_SD_NoFea	t 🛛				

Shortcuts To Commonly Used Models

Records per page: 10 24 Showing 1 to 24 of 24 entries

CANCEL

Final model

[LONGITUDINAL] input = {TSO, kge, kgl, psi, kkill, tau, V, k}

PK:

EXPOSURE = pkmodel(V,k)

EQUATION: odeType=stiff

;initial conditions of the model:

t_0=0 TS_0=TS0 K1_0=0 K2_0=0 K3_0=0

;model description:

K = (kkill*EXPOSURE) ddt_K1 = (K-K1)/tau ddt_K2 = (K1-K2)/tau ddt_K3 = (K2-K3)/tau

 $ddt_TS = (kge*TS/(1+(kge/kgl*max(0,TS))^psi)^(1/psi))*(1-K3)$

OUTPUT: output = {TS}

Best model from the library: Simeoni tumor growth with Norton-Simon linear killing and signal distribution

Final model

[LONGITUDINAL]

input = {TSO, kge, kgl, psi, kkill, tau, delta, Tlag}

PK:

;=====bevacizumab ka_b = 2.6875 k_b = 0.1143 Vd b = 2.3800

 $\label{eq:compartment} \begin{aligned} & compartment(cmt = 1, concentration = C_bev, volume = Vd_b) \\ & oral(adm = 1, cmt = 1, ka = ka_b, Tlag) \\ & elimination(cmt = 1, k = k_b) \end{aligned}$

;====cisplatin

 ka_cis
 = 66.5421

 k_cis
 = 0.2868

 Vd_cis
 = 65.1131

 compartment(cmt = 2, concentration = C_cis, volume = Vd_cis)

 oral(adm = 2, cmt = 2, ka = ka_cis)

 elimination(cmt = 2, k = k_cis)

;=====pemetrexed

ka_pem = 28.6 k_pem = 2.1328 Vd_pem = 102.7673 compartment(cmt = 3, concentration = C_pem, volume = Vd_pem) oral(adm = 3, cmt = 3, ka = ka_pem) elimination(cmt = 3, ka = ka_pem)

EXPOSURE = C_cis + C_pem

Model-Informed Drug Development

2021 Virtual Conference

EQUATION: odeType=stiff

;initial conditions of the model:

t_0=0 TS_0=TS0 K1_0=0 K2_0=0 K3 0=0

;model description:

K = (kkill*EXPOSURE)*(1+delta*C_bev)
ddt_K1 = (K-K1)/tau
ddt_K2 = (K1-K2)/tau
ddt_K3 = (K2-K3)/tau

ddt_TS = (kge*TS/(1+(kge/kgl*max(0,TS))^psi)^(1/psi))*(1-K3)

OUTPUT: output = {TS}

Best model from the library: Simeoni tumor growth with Norton-Simon linear killing and signal distribution

Extension of the model:

- 1. PK model combining cisplatin and pemetrexed
- 2. PK model for bevacizumab and new effect: activation of killing with delay

Final model

Results:

- Inter-individual variability was removed on several parameters
- Correlation group with eta_kge, eta_kgl, eta_TS0
- Good RSEs

		STOCH. APPROX.								
				S.E.	R.S.E.(%)				
Fixed Effects										
TS0_pop		7.68		1.26	1	6.5				
kge_pop		0.19		0.0074	3	.83				
kgl_pop	/	640.3		86.8	1	3.6				
kkill_pop		501.23		21.24	4	.24				
tau_pop		3.52		0.082	2	.33				
delta_pop		3.63		0.25	6	.92				
Tlag_pop		0.33		0.016	4	.75				
Standard Deviation of the Random Effects										
omega_TS0		1.15		0.12	1	0.8				
omega_kge		0.28		0.03	1	0.8				
omega_kgl		0.87		0.11	1	2.8				
omega_kkill		0.19		0.031	1	6.2				
Correlations										
orr_kge_TS0		-0.76		0.059	7	.69				
orr_kgl_TS0		0.62		0.1	1	6.3				
orr_kgl_kge		-0.66		0.093	1	4.1				
Error Model Parameters										
		34.97		5.22	1	4.9				
b		0.23		0.0093	3	.99				

Final estimates

SI SimulationsPlus Cognigen | DILlsym Services | Lixoft

Prediction distributions in Monolix

Question to answer by simulation:

What is the **optimal delay** between bevacizumab administration and chemotherapy?

First interactive exploration

-

 \rightarrow 1-2 days gap seems to be optimal for typical individual

Model-Informed Drug Development

2021 Virtual Conference

Simulation on large populations for several gaps

Post-processing for quantitative results

SI SimulationsPlus Cognigen | DILlsym Services | Lixoft

Finding optimal gap

Repeat simulation for different time gaps with LixoftConnectors (R functions calling Simulx)

library(lixoftConnectors)
initializeLixoftConnectors(software="simulx")

```
time_gaps <- seq(0,3,by=0.1
```

for (gap in time gaps)

Model-Informed Drug Development

```
loadProject(projectFile ="simulationsTGI.smlx")
```

runSimulation()
sim <- getSimulationResults()\$res\$TS</pre>

Results:

- Gap yielding smallest
 mean TS at 60 days
 = 1.1 days
- Efficacy loss in scheduling a greater gap than optimal is much less than the efficacy loss in scheduling a shorter gap

20

Conclusion

- Estimation of a population model of tumor dynamics in response to combination of bevacizumab and pemetrexed-cisplatin chemotherapy.
- Simulations show that 1.1 days-gap gives a smaller tumor size at 60 days, and that the efficacy loss in scheduling a greater gap than optimal is much less than the efficacy loss in scheduling a shorter gap.
- Next step: extrapolation of the model to human could be used to predict optimal dosing schedule in human.

Model-Informed Drug Development

Questions & Answers

Learn More! www.simulations-plus.com

SI SimulationsPlus Cognigen | DILIsym Services | Lixoft