Model-Informed Drug Development

2021 Virtual Conference

How We Build & Validate Industrial Strength Models

Bob Clark

What Does That Look Like?

A strong, reliable tool tailored to the particular demands of the relevant endpoint that will get you and your project from where you are to where you need to be safely, reliably and efficiently.

Photo courtesy of Jeffness at English Wikipedia https://commons.wikimedia.org/wiki/File:Mackinac_Bridge.jpg

- Good data subjected to thorough curation
- Discriminating, broadly applicable descriptors
- A robust machine learning engine
- Good validation tools carefully applied
- Reliable ways to estimate predictive uncertainty

Publication

 RD Clark & PR Daga. Building a Quantitative Structure-Property Relationship (QSPR) Model.
In: *Bioinformatics and Drug Discovery*, Humana Press, New York, NY; **2019**, pp. 139-159.

- Good data subjected to good curation
- Discriminating, broadly applicable descriptors
- A robust machine learning engine
- Good validation tools carefully applied
- Reliable ways to estimate predictive uncertainty

The Literature Is Like a River...

- The data in it changes constantly in quantity & quality
- It often contains lots of distracting things that do not really belong there
- It usually needs to be cleaned up quite a bit before you want to use what comes out of it
- The last 10% of clean-up takes at least 90% of the effort

...and Sometimes Like a Swamp

- Data comes in clumps of results for analogs that are disclosed together
 - this can and does lead to non-random errors, i.e., biases
- Data compilation can easily introduce errors but rarely removes them
- For a detailed discussion, see Phyo Phyo Zin's talk at 2:45 EST today on "Untold Stories of Data Curation"

How We Process Data

- Collect it from *diverse* sources, *uniform* endpoints
- Reconcile redundant entries ⇒ median values
- Standardize & analyze it graphically, then model
- Inspect outliers to find systematic errors
- Build more models, re-inspect outliers
- Iterate until outliers are inexplicable...or are gone

A Recent Curation Example

8 pairs

CHEMBL382990 Bioorg. Med. Chem. Lett. 2006, 16, 1735-1739

210 nm/s

Model-Informed Drug Development 2021 Virtual Conference Compound 213 Curr. Top. Med. Chem. 2005, 5, 1639-1675

210 nm/s

- Good data subjected to good curation
- Discriminating, broadly applicable descriptors
- A robust machine learning engine
- Good validation tools carefully applied
- Reliable ways to estimate predictive uncertainty

Focus on Discriminating Descriptors

- 2D molecular descriptors work well for most of the ADMET properties that we model
 - binding sites either do not exist (e.g., for pK_a & solubility) or are too flexible & promiscuous for reliable docking (e.g., CYPs & UGTs)
- Simple substructure-based descriptors tend to be too localized & restrict the domain of applicability
- We focus on topological indices, electrotopological state, charge-based & ionization descriptors based on pK_a analysis
- Initial choices are filtered based on degree of variance as well as both pairwise and multiway covariance

- Good data subjected to good curation
- Discriminating, broadly applicable descriptors
- A robust machine learning engine
- Good validation tools carefully applied
- Reliable ways to estimate predictive uncertainty

Artificial Neural Network Ensembles

- ANNEs with a single hidden layer of neurons usually work well for single task ADMET learning
 - SVM, MLR and PLS are also available if needed
- Each model in the ensemble is trained on an independent random ~2:3 split of the training pool into train & verify sets
- Performance on verify sets is used to stop weight optimization before the model can become overtrained
- Multiple architectures are examined and the best performing one is kept

Overview of How ANNE Models Get Built

Model-Informed Drug Development

where c(k) is 0 if observation k is in the negative class and 1 if observation k is in the positive class.

- Good data subjected to good curation
- Discriminating, broadly applicable descriptors
- A robust machine learning engine
- Good validation tools carefully applied
- Reliable ways to estimate predictive uncertainty

PERMANENT LINK TO THIS COMIC: HTTPS://XKCD.COM/1838/ IMAGE URL (FOR HOTLINKING/EMBEDDING): HTTPS://IMGS.XKCD.COM/COMICS/MACHINE_LEARNING.PNG

Model-Informed Drug Development

2021 Virtual Conference

Estimating Predictive Uncertainty

If you stir the pile enough times and keep track carefully enough of how often your past predictions were right, you can estimate how confident you should be in the accuracy of future predictions.

17

Uncertainty Methodology

- Variance in ensemble predictions is related to uncertainty, but not directly because the models are not statistically independent
 - \Rightarrow predictive errors follow *overdisperse distributions*
- For uncertainty in predicted classifications, we have shown that the actual errors follow a *beta binomial distribution*
 - RD Clark et al. J Cheminformatics 2009, 1, 11
- For regression uncertainty, the joint distribution of the predictive standard error and the standard deviation of prediction fit a pair of coupled *generalized gamma distributions*
 - M Waldman & RD Clark, "New approach to regression uncertainty analysis and applications to drug design," presented Fall ACS 2019

Other Cheminformatics Contributors

- Marv Waldman
- Dechuan Zhuang
- Robert Fraczkiewicz
- Wenkel Liang
- David Miller

- Pankaj Daga
- Phyo Zin
- Michael Lawless
- Ola Mikosz
- Eric Jamois

Questions & Answers

Model-Informed Drug Development

bob@simulations-plus.com

