Model-Informed Drug Development

2021 Virtual Conference

Pharmacometrics in Phase 2 – Proof-of-Concept and Dose Selection for Phase 3/Marketing

Sébastien Bihorel

© 2021 Simulations Plus, Inc. This presentation is protected by copyright laws. Reproduction and/or distribution of this presentation or its contents without permission of Simulations Plus is prohibited.

Phase 2 Studies

- Intent-to-treat (ITT) population
- Goals
 - Efficacy (proof-of-concept)
 - Safety

Dose selection for large-scale Phase 3 studies

2a

2b

2a, 2b

"Exposure-response information is at the heart of any determination of the safety and effectiveness of drugs"

FDA's Guidance for Industry: Exposure-Response Relationships — Study Design, Data Analysis, and Regulatory Applications

Exposure-Response

Pharmacokinetics (PK) **Pharmacodynamics (PD)** oxicity **Drug** concentration Efficacy Response Dose Level of acceptable toxicity Time Exposure Concentration, AUC, Cmax, Cmin SI SimulationsPlus

Cognigen | DILIsym Services | Lixoft

Exposure-Response

Pharmacokinetics (PK)

Population compartmental modeling Pharmacodynamics (PD)

- Longitudinal PK/PD (empirical or semi-mechanistic)
- Direct exposure-response
- Logistic regression
- Proportional odds model
- Survival (time-to-event)

Exposure Concentration, AUC, Cmax, Cmin

> St SimulationsPlus Cognigen | DILIsym Services | Lixoft

Dose

Pharmacometrics Analyses

Determinants of drug PK

- Dose, route of administration, formulation
- Covariate effects (size, special populations, comedications, etc.)
- Determinants of response
 - Potential delay between drug exposure and response
 - Mechanism of action
 - Which exposures best relates to response
 - Disease progression, placebo response
 - Covariate effects (demographics, baseline, comedications, comorbidity etc.)

Where can pharmacometrics help?

- Design of Phase 2 studies
 - Analysis of Phase 2 data
 - Support the understanding of efficacy and safety and their determinants
 - Support end-of-phase-2 meetings with regulatory agencies
- Design and dose selection of Phase 3 studies using model-based clinical trial simulation

PRIOR TO PHASE 2

Proof of Concept Studies

- Primary endpoint(s) typically defined as some measure(s) of efficacy at a given time point
- Traditional statistical methods
- Population size defined such as to achieve a given power to detect a target effect using this statistical approach

Model-based Power Approach

Type 2 diabetes (HbA1c) Acute stroke (NIH Stroke Scale) а Pharmacometric model-based power (POC) Pharmacometric model-based power (POC) b t-test based power t-test based power 100 100 A factor 4.3 A factor 8.4 80 80 difference difference Power (%) ower (%) 60 60 40 40 20 20 50 150 100 200 300 400 500 600 100 Total number of patients Total number of patients

Phase 2a (PoC): Active vs Placebo

SI Simulations Plus Cognigen | DILIsym Services | Lixoft

Model-based Power Approach

Phase 2b (dose ranging) 3 dose levels + placebo

SI Simulations Plus Cognigen | DILlsym Services | Lixoft

Model-based Power Approach

Pros:

- Reduce the number of patients exposed to experimental treatment
- Reduce trial cost and duration (especially if enrollment rate is slow)

Cons:

 Require prior knowledge of disease / biomarker models and "best guess" of pharmacokinetic and pharmacodynamic properties of the drug in the ITT population

DURING PHASE 2

Study Case: Dasotraline

- Attention-deficit/hyperactivity disorder (ADHD)
- Inhibitor of dopamine (DAT), norepinephrine (NET), and serotonin (SERT) transporters
- 500+ participants in 3 phase 1 and 1 phase 2 studies
- Nonlinear mixed effect models:
 - PK model
 - E-R model of norepinephrine metabolite 3,4-dihydroxyphenylglycol (DHPG) dynamics (marker of NET inhibition)
 - E-R model of ADHD symptoms rating scale (ADHD RS-IV)
 - Dropout model

Dosatraline PK

Data collected after single and multiple dose

Slow absorption and (nonlinear) elimination

Population PK Model

- Complex time-dependent clearance with linear and saturable components $CL(t) = CL_{int} - CL_{ind} \times e^{-\alpha \times t}$
- Covariate analysis tested effects of various demographic and lab variables
- Body weight significantly influenced clearance and volume of distribution

Side-note about Forrest Plots

Plot generated based upon upadacitinib PK model using pooled phase 1 and phase 2 data

Modeling of DHPG

- > DHPG concentration reflects > norepinephrine uptake and metabolism by NET inhibitors
- DHPG relates to dosatraline PK following a power function

$$DHPG = DHPG_0 - \alpha \times \left(\frac{PK(t)}{\overline{PK}}\right)'$$

- Data and model estimates shows incomplete but still clinically relevant inhibition of NET
- None of the screened covariate was not be significant descriptor of DHPG response

Modeling of ADHD Symptoms Scores

- Majority of > ADHD RS-IV score occurred by week 1 during which dasotraline concentrations were low
- Additional reduction in ADHD RS-IV score achieved with dasotraline
- Placebo effect described by an inverse Michaelis-Menten model of time and dasotraline effect as a linear effect on the maximum effect of time.

Modeling of Participant Dropout

- % dropouts
 * with dose in phase 2 trial
- Dropouts were mostly due to AE
- Cox proportional hazard survival model linking dropout with ≯ in time and average dasotraline concentration: dropouts 4 times less likely at 4 mg than 8 mg QD

Other Applications

- Disease progression
- Adverse event incidence
- QT prolongation
- Meta-analysis and comparison to competitor products

STAGING PHASE 3

Clinical Trial Simulations

PK models, disease-drug models of efficacy, safety, and dropout models from phase 2 data can be leveraged to simulate virtual phase 3 clinical trials to predict outcomes under various scenarios (dosing scheme, duration, population characteristics and size, etc)

Study Case: Dasotraline

- Minimal effective dose: 4 mg QD
- No effect dose at 2 mg QD
- Optimal duration of treatment: 8-week
- Sample size: ≥ 200

Model-Informed Drug Development 2021 Virtual Conference

Hopkins et al, doi:10.1007/s40261-015-0358-7

Other Applications

- New target populations (eg, pediatrics) if similar pathophysiology
- Dose adjustment in subpopulation with specific intrinsic (eg, renal impairment) or extrinsic factors (eg, co-medications)
- New formulation, dose or route of administration

Conclusions

- Pharmacometrics can support design and analysis of phase 2 trials
- Evidence of efficacy and safety
- Integral part of documentation for end-of-phase
 2 meetings

Support design of phase 3 trials

Model-Informed Drug Development

2021 Virtual Conference

Learn More! www.simulations-plus.com

SF SimulationsPlus Cognigen | DILIsym Services | Lixoft

Karlsson et al, doi:10.1038/psp.2012.24

29

NIH Stroke Scale

Model-Informed Drug Development

2021 Virtual Conference

FPG + HbA1c

S: SimulationsPlus Cognigen | DILIsym Services | Lixoft