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Abbreviations

• %F: oral bioavailability
• %Fa: fraction absorbed

• %FDp: fraction of dose in portal vein
• ACAT: advanced compartmental 

absorption and transit
• AD: applicability domain

• ADME: absorption, distribution, 
metabolism and excretion

• BCRP: breast cancer resistant protein
• GI: gastrointestinal

• OATP1B1: organic anion transporting 
polypeptide 1B1

• ODE: ordinary differential equation
• RMSE: root mean square error

• QSAR: quantitative structure activity 
relationship

• QSPR: quantitative structure property 
relationship

• PBK: physiologically based kinetic

• PepT1: peptide transporter 1
• Pgp: P-glycoprotein



Outline

• PBK model conception
• Model structure and mathematical representation 

• PBK model parameterization
• PBK computational implementation
• Integrating machine learning into PBK simulations
• Machine learning model background
• Case study - PBK simulations to predict herbicide absorption 

and bioavailability
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Step 2: Model Conceptualization (Model structure and 
mathematical representation)  

• The structure of the PBK model is informed by the problem formulation, 
knowledge of the biokinetic mechanism, and availability of suitable data

• The model should only be as complex as necessary to address the 
problem, e.g., a one-component model might be sufficient

• Chemical partitioning into compartments assumed to be instantaneous
• Tissue and organ masses should be within the body mass
• Total blood flow equals sum of the flows to the compartments

• Chemical distribution into compartments is perfusion or permeability 
limited uptake



Human/mammals Fish Poultry

Chemical administration routes are in green box
OECD (2021)

Tissues and organs are 
compartments that have:
• A specific volume
• Blood perfusion rate
• Volume fractions of 

lipids and proteins
• Tissue/plasma partition 

coefficient (Kp)
• Enzyme/transporter 

expression levels

PBK Model Conceptualization



PBK Model Conceptualization
PBK models solve a series of differential equations that describe a chemical’s time 

dependent absorption, distribution, metabolism and excretion (ADME).

𝑉𝑉𝑡𝑡
𝑑𝑑𝐶𝐶𝑡𝑡
𝑑𝑑𝑑𝑑

= 𝑄𝑄 𝐶𝐶𝑏𝑏𝑏𝑏 −
𝐶𝐶𝑡𝑡 × 𝑅𝑅𝑏𝑏𝑏𝑏

𝐾𝐾𝑝𝑝

Cbi, Q, RbpCbo, Q, Rbp

Vv, Cv, fup

Cbi, Cbo = blood conc. in and out
Q = blood flow
Rbp = blood to plasma ratio
Vv, Vt, = plasma and tissue volume
fut, fup = fraction unbound tissue and plasma
CLint = tissue intrinsic clearance
Kp = tissue/plasma coefficient
Cv, Ct = plasma and tissue concentration

Kp

𝑉𝑉𝑡𝑡
𝑑𝑑𝐶𝐶𝑡𝑡
𝑑𝑑𝑑𝑑

= 𝑄𝑄 × 𝐶𝐶𝑏𝑏𝑏𝑏 −
𝑄𝑄 × 𝐶𝐶𝑡𝑡 × 𝑅𝑅𝑏𝑏𝑏𝑏

𝐾𝐾𝑝𝑝
− 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖(

𝐶𝐶𝑡𝑡 × 𝑓𝑓𝑓𝑓𝑝𝑝
𝐾𝐾𝑝𝑝

)

Vt, Ct , fut, CLint

arterialvenous

Non-eliminating, 
perfusion-limited tissue

Last term represents 
clearance in the tissue

(Jeong Y et al. 2017 and Espie P 2009)



PBK Model Conceptualization
500 mg dose

Dissolved
Absorbed

Systemic circulation

Metabolized

Muscle

Heart

Venous return

Amount of compound dissolved and absorbed 
in gastrointestinal tract, in systemic circulation, 
and metabolized. The amount metabolized 
equals the difference between the amount 
absorbed and in systemic circulation.

Compound concentration versus time in heart, 
muscle, and venous return.



Step 3: PBK Model Parameterization

• Physiological parameters
• Volume, blood flow, pH (GI tract compartments), etc.
• Literature values (Brown et. al., 1997, Davis and Morris 1993, 

https://www.interspeciesinfo.com)
• Chemical specific ADME parameters

• Rate of absorption (Ka)
• pKa
• Octanol-water distribution coefficient (logD)
• Solubility
• Intrinsic clearance (CLint)
• Km and Vmax
• Fraction unbound to plasma
• Blood to plasma ratio

in vitro experiments 
or in silico models



Step 3: PBK Model Parameterization

• Absorption across external barriers (passive, uptake, efflux)
• Oral, intravenous, dermal, inhalation

• Partitioning
• Organism and environment
• Organ/tissue and plasma

• Active transport into or out of cells
• Efflux transporters, e.g., Pgp and BCRP,  on the basolateral 

membrane of the cell transport chemicals out of the cell
• Influx transporters, e.g., PepT1, OATP1B1, on the apical membrane 

of the cell transport chemicals into the cell



Step 3: Model Parameterization

• Systemic clearance
• Removal of the compound from systemic circulation
• Exhalation for volatile chemicals
• Renal clearance
• Metabolism
• Biliary clearance (excretion from hepatocyte into bile)



Step 4: Computer Implementation

• Software packages that solve ordinary differential equations (ODE)
• Methods are well established and not a significant source of uncertainty
• Examples of PBK modeling software (Annex 1, Table 1C)

• Cloe® (Cyprotex)
• High throughput toxicokinetics – Httk (EPA)
• GastroPlus® (Simulations Plus)
• Simcyp™ Simulator (Certara)
• PK-Sim® (Bayer) open source
• PLETHEM (ScitoVation)
• Berkley Madonna (https://berkeley-madonna.myshopify.com/)



In Silico Property Estimation and PBK

PBKMachine learning models

Goal: provide parameters for PBK simulations 
based on 2D structure of the molecule

Permeability, 
solubility, pKa, 

logD Fup, 
blood:plasma 

ratio, CLint
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Model

Machine Learning Technology
 logP/D
 pKa
 Aqueous solubility
 Human jejunal permeability
 Blood to plasma ratio
 Plasma protein binding, fup

 Toxicities
 Metabolic ActivitiesDescriptor Generation

fn(x)f(x)f(x)f1(x)

Training Algorithms
• Multiple linear regression (MLR)
• Partial least squares (PLS)
• Artificial neural networks (ANN)
• Support vector machine (SVM)
• Deep learning
• K-nearest neighbor clustering

Structures and 
endpoint data



OECD Principles for validating QSAR models (OECD 2007)

• A defined endpoint
• An unambiguous algorithm
• A defined domain of applicability
• Appropriate measures of goodness-of-fit, robustness, and 

predictivity
• R2, root mean square error

• A mechanistic interpretation, if possible



Goodness-of-fit, Robustness, and 
Predictivity of Regression Models

𝑅𝑅2 = 1 −
∑(𝑦𝑦 − �𝑦𝑦)2

∑(𝑦𝑦 − �𝑦𝑦)2

y is the observed value
�𝑦𝑦 is the predicted value
�𝑦𝑦 is the mean

RMSE = ∑(𝑦𝑦 − �𝑦𝑦)2

𝑛𝑛
RMSE  is the root mean square error
n is the number of observations 

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

lo
g(

ob
se

rv
ed

)

log(predicted)

Alexander, et al 2015 
suggests reporting  the 
coefficient of determination 
(R2) and RMSE on a test set.
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Simple Applicability Domain Method
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Predictions for molecules whose descriptors are outside of the applicability 
domain of the model should be subjected to parameter sensitivity analysis.

OECD (2007)



In Silico Tools*

* OECD (2021) Annex 1, Table 1A

Resource Available from

ACD/Percepta ACD Labs

ADMET Predictor® Simulations Plus, Inc.

ALOGPS 2.1 http://www.vcclab.org/lab/alogps/  

ChemAxon ChemAxon

Computational Toxicology Dashboard EPA, includes OPERA predictions (Mansouri 2018)

EPIK, QikProp Schrodinger

Episuite US-EPA

MOE (Molecular Modelling Environment) Chemical Computing Group

MoKa, VolSurf Molecular Discovery

OECD QSAR toolbox https://www.qsartoolbox.org/ 

SwissADME http://www.swissadme.ch/



What’s happening in vivo for an orally administered compound

D

pKa
Solubility vs. pH
Biorelevant solubility
Precipitation kinetics

Fa%
A Transcellular permeability

Paracellular permeability
logD vs. pH
Gut extraction
Carrier-mediated transport

MetabolismFDp%

PV

Metabolism
Liver metabolism
Non-linear clearance
Hepatic uptake
Biliary secretion

F%
(not Fa%)SC

Tissue distribution
Plasma protein binding
Blood:plasma concentration ratio
Systemic clearance

Adipose Liver Brain
Spleen Muscle Heart
Kidney

Capsugel (1998)



Herbicide absorption and bioavailability prediction workflow

• Searches of EPA, EFSA and WHO risk assessments and databases provided observed %Fa 
and %Fb estimates for 31 of 37 representative herbicides cited by Zhang 2018

• Fasted rat physiology details (gastrointestinal compartment sizes and transit times, liver 
volumes, etc.) were taken from the ACAT™ model in GastroPlus® 9.0.

• Rat HTPK simulations were run for each herbicide in ADMET Predictor® 9.0 using 
predicted logP, pKa, aqueous solubility, effective jejunal permeability, fraction unbound 
in microsomes (fumic), fraction unbound in rat plasma (fup), and the ratio of blood to 
plasma for rat

• Hepatic clearance was based on the predicted total cytochrome P450 (CYP) clearance in 
rat liver microsomes (RLM)

• Renal clearance was taken as glomerular filtration rate (GFR) * fup
• Calculated fractions ionized and molecular size parameters were used to account for 

paracellular permeability



Herbicide absorption and bioavailability prediction workflow

• The predicted %Fa was compared graphically to the percentage of 
radiolabel not recovered in the feces

• The predicted %Fb was compared with the amount of parent recovered 
from the urine

• Note that both “observed” values are lower bounds for the values that 
would be obtained by sampling the blood

• Points in the predicted vs. observed plots were color-coded by a 
qualitative measure of their predicted susceptibility to glucuronidation 
in rat liver and by whether or not they were predicted to be substrates 
for P-glycoprotein (P-gp)

• This was done to flag cases where the simplifying assumptions made may 
break down
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81% predicted within 2-fold of the reported value 59% predicted within 2-fold of the reported value, 
with only 10% underestimated by more than 2-fold.
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Summary and Conclusion

• The PKB model structure depends on the problem, knowledge of the 
biokinetic mechanism, and availability of suitable data

• Model parameterization includes physiological and ADME parameters
• In vitro experiments and/or machine learning models can be used as model 

parameters
• PKB models are implemented by software packages which have well 

established methods and are not a significant source of uncertainty
• OECD guidance 69 lists several principles for validating QSAR machine 

learning models
• 81% of %Fa and 59% of %Fb predictions were within 2-fold of the 

observed value for 37 herbicides 
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