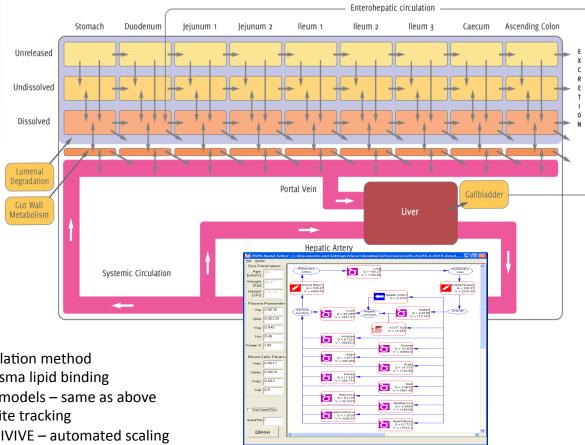

Saying "I do" to the QSAR/PBPK marriage...

Goal: <u>reliably</u> and <u>efficiently</u> utilize PBPK modeling to reduce animal/human testing

Quantitative Structure Activity Relationships (QSAR)

Physiologically-Based Pharmacokinetics (PBPK)



Why is GastroPlus unique?

Absorption & Dissolution:

- #1-ranked commercial QSAR models integrated
- #1-ranked commercial model for absorption rate calculations
- Several dissolution models including the popular Z-factor approach
- Mechanistic nucleation/growth precipitation model
- Paracellular permeability
- Animal physiology models dog, rat, mouse, cyno & rhesus monkeys, minipig, rabbit
- It's not just gut!

Advanced Compartmental Absorption and Transit Model (ACAT™)

PBPK Modeling:

- #1-ranked Kp calculation method
- Adjustments of plasma lipid binding
- Animal physiology models same as above
- Unlimited metabolite tracking
- Transporter-based IVIVE automated scaling of tissue PStc
- Customization of model without equation writing

That's not all!

ANYTHING you can do with other tools can be done with GastroPlus:

- Population PBPK models (since 2005)
 - PBPK/PD modeling (since 2005)
 - DDI predictions (since 2008)
 - Mechanistic IVIVCs (since 2001)
- Nonlinear metabolism or transport kinetics in any tissue (since 2005)
 - ... and more!

How do our model results compare?

Independent comparison of aqueous solubility predictors

(Dearden JC. Exper. Opin. Drug Discovery 2006 1:31)

Comparison of first-in-human (FIH) PBPK prediction accuracy in a 2-year study of 21 compounds (Cole et al., ISSX 2008)

Table 4. Predictive abilities of some commercially available software for aqueous solubility prediction, based on 122-compound test-set of drugs.

Software	% Compounds p	r2		_	Ref.	
Software	L 0.5 log unit L 1.8 log unit		—r*	q²		S
SimulationsPlus	64.8	91.0	0.82	0.82	0.47	[203]
Admensa	/2.1	00.9	0.70	0.74	0.65	[205]
Pharma Algorithms ADME Boxes	59.0	86.9	0.74	0.73	0.62	[206]
ChemSilico	59.8	86.0	0.67	0.65	0.73	[202]
ACDLabs	59.0	85.2	0.73	0.72	0.66	[204]
AlogS	51.6	81.1	0.67	0.66	0.73	[207]
PredictionBase	46.7	81.1	0.48	0.46	1.07	[208]
ESOL	54.9	78.7	0.60	0.59	0.84	[209]
MOLPRO	62.3	77.9	0.44	0.42	1.22	[210]
Absolv 2	44.3	74.6	0.53	0.51	0.95	[206]
QikProp	47.6	73.8	0.57	0.57	0.97	[201]
SPARC*	42.9	73.1	0.73	0.72	0.96	[211]
Cerius ² ADME	37.7	72.9	0.61	0.60	1.02	[212]
WSKOWWIN	41.0	67.2	0.51	0.49	1.17	[213]
ADMEWORKS Predictor	34.4	66.4	0.42	0.39	1.24	[214]
AlogP98	38.5	62.3	0.42	0.40	0.77	[85,212]
CHEMICALC*	23.3	45.7	0.35	0.34	1.96	[215]

^{*}Based on 119 compounds; SPARC could not calculate solubilities of 3 compounds.

^{*}Based on 116 compounds, using log P method with calculated melting point, which was not available for 6 compounds; kindly calculated by Prof. G. Schüürmann.

Table 2. Perform	ance of algorith	ms					
	Star (23	4)	Nostar	(50)	Zwitter	ions (18)	Other (266)
Method	MAE	Rank	MAE	Rank	MAE	AE	MAE
A_S+logP	0.33	I	0.7	I	0.4	-0.01	0.4
ALOGPS ³	0.39	I	0.7	I	0.64	-0.51	0.44
VLOGP ⁴	0.50(0.41)	II	0.95(0.84)	I,III	0.87(0.69)	-0.8(-0.62)	0.56(0.47)
SLIPPER	0.58	II	0.91	I,III	1.2	-1.14	0.6
QikProp	0.58	II	1.01	III	0.83	-0.48	0.64
CSlogP	0.61	II	0.95	I,III	0.54	-0.06	0.68
TLOGP ⁵	0.64	II	1.01	III	1.26	-0.97	0.69
Absolv	0.65	II	0.94	I,III	1.98	-1.97	0.61
QuantlogP ³	0.7	II	1.03	III	1.91	-1.9	0.68
QLOGP	0.72	II	1.19	III	0.9	-0.24	0.79
VEGA ⁶	0.8	III	1.07	III	1.53	0.95	0.8
CLIP ⁷	0.82	III	1.27	III	1.3	-0.95	0.87
LSER	0.87	III	1.26	III	2.32	-2.31	0.84
MLOGP	0.93	III	1.12	III	1.64	-1.51	0.92
SPARC ^{8,9}	0.93	III	1.17	III	0.72	0.06	0.99
COSMOFrag ³	1.13	III	1.38	IV	2.48	-2.47	1.09
LSER UFZ ⁸	1.19	IV	2.15	IV	2.32	-1.75	1.29
GBLOGP ⁷	1.25	IV	1.76	IV	2.51	2.46	1.26
HINT	1.38	IV	2.14	IV	3.25	-3.24	1.39
AAM	1.37	IV	1.87	IV	2.96		1.36

Summary of IV profile prediction accuracy

	PROFILE		Vss	CL		
APPROACH	Weighted sum of squares (RANK)	AFE	% within 2-fold error (3-fold error)	AFE	% within 2-fold error (3-fold error)	
GastroPlus	-11.7 (1)	1.4	90 (100)	1.6	80 (85)	
PKSim	-6.4 (2)	1.7	70 (90)	1.6	80 (85)	
Current Pfizer Approach	-3.8 (3)	1.6	75 (85)	1.6	80 (85)	
SimCYP - hlm	5.6 (4)*	1.5	80 (95)	2.5	58 (74)	
SimCYP - rhCYP	7.8 (5)*	1.5	80 (95)	2.4	55 (65)	
ChloePK	8.5 (6)*	-	2	1.7	70 (80)	

Summary of Oral profile prediction accuracy

AFE→ Average Fold En	TC	Er	Fold	age	Aver	E->	AF	
----------------------	----	----	------	-----	------	-----	----	--

	PROFILE		AUC	Cmax		
APPROACH	Weighted sum of squares (RANK)	AFE % within 2-fold error)		AFE	% within 2-fold error (3-fold error)	
GastroPlus	-9.8 (1)	2.7	50 (72)	2.0	67 (72)	
Current Pfizer Approach	-5.3 (2)	3.9	33 (56)	2.5	44 (61)	
SimCYP - rhCYP	-3.7 (3)	3.0	56 (67)	2.2	61 (72)	
SimCYP - hlm	5.7 (4)*	3.6	41 (53)	2.7	53 (59)	
PKSim	6.1 (5)*	4.7	22 (39)	5.0	17 (33)	
ChloePK	7.0 (6)*	2.8	39 (50)	2.4	50 (61)	

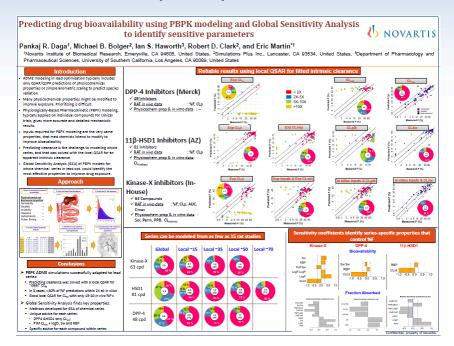
Predicted by	Trained with	MAE	RMSE	R ²
ACD/Percepta v. 12	15932 lit pK _a	0.77	1.05	0.84
ADMET Predictor v. 6.1	14147 lit pK _a	0.73	0.95	0.86
ADMET Predictor v. 7.0	14149 lit pK _a + 19467 Bayer pK _a	0.51	0.67	0.93

Independent comparison of pKa predictors

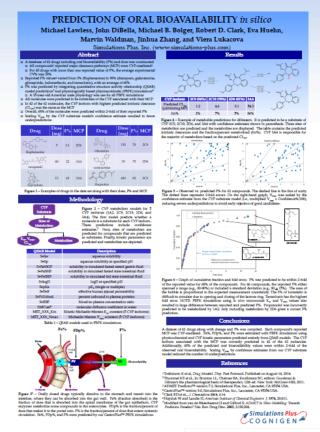
(Fraczkiewicz, Lobell, et al., PCMDDD 2013)

Independent comparison of logP predictors

(Tetko & Poda, 2007)



Recent validation: The QSAR/PBPK marriage


Daga et al. (2015) Gordon Research Conf.

Building QSAR models for clearance using 15-30 in vivo rat CL measurements:

>75% of compounds predicted within 2-fold

Lawless et al. (2015) ISSX Annual Meeting Using QSAR & PBPK to predict human F%: 70% of compounds predicted within 2-fold

How does GastroPlus address your challenges?

Do I have the time & expertise to write code and manage updates?	No equation writing AND customization options available
How do I define all of the parameters required for a PBPK model?	#1-rated QSAR models integrated for complete <i>in silico</i> solutions
What about other species or different populations?	Complete database of animal and human (American & Asian – pediatrics and adults) physiology models included
What if my chemical is exposed through several dosing routes?	Mechanistic models for oral, pulmonary, dermal, and ocular delivery
How am I going to predict both local and systemic concentrations?	Track all variables and easily capture output in Excel
Where do I start with all of the chemicals I have?	Batch mode, automated sensitivity analysis and optimization available
How possible is it to predict metabolite exposure?	Unlimited metabolite tracking options
I am guessing the commercial tools must be expensive?	Flexible licensing options and expert consulting support
Will my commercial provider be around for the long haul?	Publicly traded for >18 years & counting

Regulatory scientists trained on GastroPlus PBPK modeling

- In 2013, scientists from 17 companies in North America and Europe formed the GastroPlus User Group
- To date, >930 members on the <u>LinkedIn group page</u> membership is free!

Mission Statement

Discuss best practices, Q&A and FAQs

Present and advance M&S science via social media, webinars and face-to-face meetings Establish pre-competitive areas of research and collaboration across industry and academia Understand and influence regulatory expectations for M&S submissions

