Development of an *in silico* model of topical acyclovir to explore formulation design

Jessica Spires, William van Osdol, Viera Lukacova

Simulations Plus, Inc.

CONTACT INFORMATION: jessica.spires@simulations-plus.com

PURPOSE

Acyclovir (ACY) creams are used for local treatment of HSV-1 infections in the basal epidermis. Local delivery to the skin through the stratum corneum (SC) must be effective to reach target concentrations deeper in the skin. Zovirax[®] cream has a high percentage of undissolved acyclovir and low dermal delivery, suggesting that ACY content may be reduced without affecting delivery to the skin. The Transdermal Compartmental Absorption and Transit[™] (TCAT) model in GastroPlus® is a physiologically based mathematical model that simulates the dermal and systemic pharmacokinetics of topically applied compounds. A validated TCAT model of ACY can be used to investigate formulation properties of Zovirax cream and optimize design.

OBJECTIVE

Use the TCAT model in GastroPlus to demonstrate how a validated model of acyclovir dermal delivery can be used to explore the effect of decreasing ACY content in a topically applied cream.

METHODS

- Use composition and *in vitro* data to develop a model of ACY dermal delivery from Zovirax[®] cream 5% in GastroPlus 9.8.3
- Validate the model using *in vivo* tape stripping data
- Perform parameter sensitivity analysis on ACY content of the cream

RESULTS

ACY content

Cont phase/wat

eff, Kdisp,w

ffective diffus

ntinuous pha

iffusivity in th

Dispersed pha adius, r^{disp}

ACY particle radi

SC permeability,

ermis permea

ebum / hair pe

raction bound

oid in VE & der

hase, D^{disp}

TCAT ACY model parameters were developed based on measurements from the literature (Table 1). The model showed good agreement with tape-stripping data 6h and 23h after *in vivo* application of Zovirax cream (Figure 1). Model simulations were then performed where ACY content was reduced from the amount in Zovirax cream (Figure 2). No difference in the delivery to SC was predicted up to a 95% reduction in dose. Dermal delivery can be maintained across a wide dose range because undissolved ACY content is reduced while dissolved ACY concentration in the cream remains at saturation throughout the course of delivery (Figure 3).

 Table 1. Summary of TCAT model parameters.

er	Value	Units	Source / Derivation
	50	mg/g cream	Zovirax US prescribing information (2014)
	0.282		Calculated from the composition ^A
ty	2.88	mg/mL	Diez-Sales et al. J Pharm Sci 94, 1039–1047 (2005).
partition	2.62		Ratio of continuous phase and water solubilities
artition	3.98E-02		Calculated from ADMET Predictor 10.3 Log $\mathrm{K_{o,w}}^{*}$
' in D ^{eff}	3.41E-08	cm²/s	Higuchi analysis of SN Murthy's in vitro release data ${}^{\!\scriptscriptstyle B,C}$
spersed	1.11E-08		Extrapolated from ferrocene cyclic voltammetry data ^D
oplet	1	μm	A nominal value for emulsions
	1.88	μm	One half d_{s0} from SN Murthy's particle size data ($d_{10} = 2$ mm, $d_{90} = 19$ mm) ⁸
c	5.37E-09	cm/s	Robinson model (Wilschut et al, Chemosphere 30, 127 1296 (1995).
	2.48E-04		Kretsos et al. Int J Pharm 346, 64–79 (2008).
ty, P ^{De}	2.85E-05		
eability,	8.865e-10		$D^{Sebum} = D^{disp}, \ K^{Sebum,w} = 1.04e \text{-} 2^{H} \ with \ P^{Sebum} \ calculated \\ GastroPlus \ 9.8.3$
C	0.215		Equilibrium keratin binding model ^{E,F,G}
protein and s	0.145		Bound fraction in skin (1 - f _{u,skin}), Lukačova Method, GastroPlus 9.8.3

Uptake (6h)

10%

Figure 3. TCAT model predicted undissolved ACY content

ACY Content in the Formulati

5%

50%

remaining in cream after 6-hour application

100%

07

- A. Jones & White. Formulations of Heterocyclic
- Compounds. (1990) B. Murthy, S. N. Characterizing the critical quality attributes and in vitro bioavailability of acyclovir and metronidazole topical
- products. (2017). C. Siepmann & Peppas. Int J Pharm **418**, 6–12 (2011).
- D. Zhang & Michniak-Kohn. Int J Pharm 421, 34–44 (2011).
 E. Hansen et al. Pharm Res 26, 1379–1397
- (2009). F. Hansen et al. J Pharm Sci 100, 1712–1726
- (2011). G. Wagner et al. Eur J Pharm Biopharm 55, 57–
- 65 (2003). H. Yang, Chen & Lian, Pharm Res, **35**:141-152,
- 2018

Figure 1. Total ACY concentrations (µg/cm²) in stratum corneum recovered via tape stripping on uptake at 6 hours (left) and clearance at 23 hours (right) of Study 1 (top, US Reference and US comparator) and Study 2 (bottom, US Test) after *in vivo* application of Zovirax to the forearms (open symbols and geometric mean line in black), with TCAT model prediction (blue line).

Figure 2. Total ACY concentrations ($\mu g/cm^2$) in stratum corneum recovered via tape stripping on uptake at 6 hours (left) and clearance at 23 hours (right) of Study 1 (top, US Reference and US Comparator) and Study 2 (bottom, US Test) after *in vivo* application of Zovirax to the forearms (open symbols and geometric mean line in black), with TCAT model predictions of SC uptake and clearance at 100%, 50%, 10%, 5%, 3%, and 1% of Zovirax ACY content.

SimulationsPlus

CONCLUSION

In vitro and *in vivo* experimental data can be used to build a validated TCAT model of skin permeation of acyclovir. The validated model can be used to explore formulation characteristics such as ACY content. Due to the high percentage of undissolved ACY in Zovirax cream, the model predicts that the same dermal delivery can be achieved with much lower ACY content.

REFERENCE

Pensado, A, Chiu WS, Cordery SF, Rantou E, Bunge AL, Delgado-Charro MB, and Guy RH. Stratum corneum sampling to assess bioequivalence between topical acyclovir products. *Pharm Res* **36**, 180 (2019).

ACKNOWLEDGMENT

Funding for this project was made possible, in part, by the US FDA through grants 1U01FD006526-01 and 1U01FD007320-01. Views expressed here do not necessarily reflect the official policies of the Department of Health and Human Services, nor does any mention of trade names, commercial practices or organizations imply endorsement by the United States Government.

