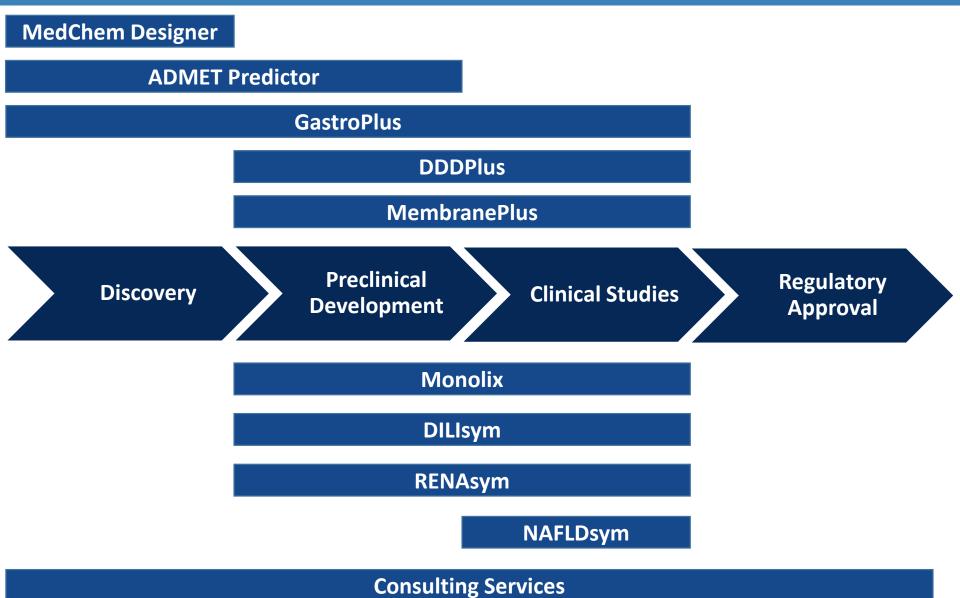


SimulationsPlus SCIENCE + SOFTWARE = SUCCESS


LD MICRO September 2020 Nasdaq: SLP

With the exception of historical information, the matters discussed in this presentation are forward-looking statements that involve a number of risks and uncertainties. The actual results of the Company could differ significantly from those statements. Factors that could cause or contribute to such differences include but are not limited to: continuing demand for the Company's products, competitive factors, the Company's ability to finance future growth, the Company's ability to produce and market new products in a timely fashion, the Company's ability to continue to attract and retain skilled personnel, and the Company's ability to sustain or improve current levels of productivity. Further information on the Company's risk factors is contained in the Company's quarterly and annual reports and filed with the Securities and Exchange Commission.

Investment Highlights

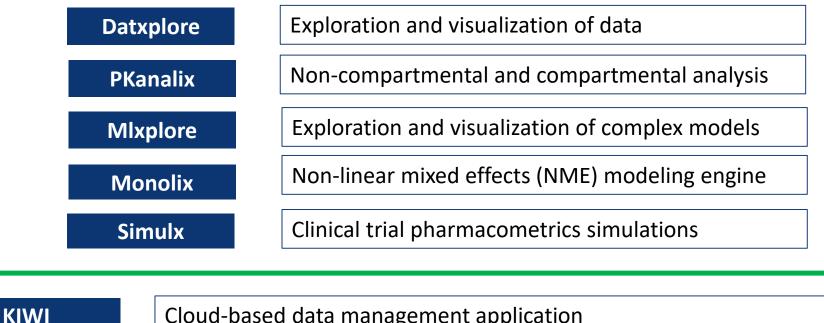
- Provider of innovative modeling and simulation software and consulting services focused on pharmaceutical and biotechnology companies
 - Solutions from early discovery through regulatory approval
- Pure play in the in silico drug discovery space
- Growing acceptance of technology by regulators and industry with supportive guidance issued by the FDA
- Products have the potential to reduce drug development costs and time while improving success rates
- Steady growth in pharmaceutical industry R&D expenditures provides expanding target market
 - ~\$170B in 2020 growing around 3% per year¹
- Ten-year track record of consistent revenue and profitability growth
 - Recent revenue CAGR of 20%+

Enabling Drug Discovery and Development

Our Value Proposition

It costs ~\$1.4B and 10+ years to bring a drug to market^{2,3}

- Simulations Plus technologies allow customers to model and predict results of chemical and biological tests required in the drug R&D process
- Computational AI models help scientists streamline and improve their processes
 - Machine learning and ability to utilize ever-growing data sets improves models over time
- More rapidly find "drug-like" hits and leads and optimize them
- Better inform clinical trial design and analyze clinical results
- Identify potential safety liabilities earlier, avoiding costly clinical failures
- Optimize efficacy and minimize toxicity by efficiently identifying dosing regimens
- Improve success rates at multiple points in the process
- Technologies have helped bring 40 drugs to market and informed many more development programs


Physiologically Based PK Software and AI Data Mining

GastroPlus	Simulating IV, oral, oral cavity, ocular, inhalation, skin and IM absorption, PBPK, PBBM, PD modeling and drug-drug interactions					
ADMET Predictor	QSAR modeling enabling rapid prediction of 140+ ADMET properties Used for lead generation and optimization					
DDDPlus	Mechanistic simulation engine for the in vitro dissolution predictions to accelerate and optimize drug formulation					
MembranePlu s	Predict how fast a drug candidate will pass across the important physiological membrane barriers (GI, BBB)					
MedChem Designer	Chemical sketching tool with ADMET property predictions in connection with ADMET Predictor					

Population PK/PD Modeling

Monolix Suite

Population PK/PD Model to support dose regimen, risk exposure, clinical trial protocol design and analysis, drug label specifications and regulatory submission

Cloud-based data management application

Quantitative Systems Pharmacology/Toxicology Modeling

DILIsym	Determine potential drug-induced liver injury hazard posed by individual drug candidates to support clinical trial optimization
RENAsym	Assess the potential for drug-induced kidney injury of drug candidates to support clinical trial optimization and clinical trial decision making
NAFLDsym	NASH model to predict efficacy for treatment modalities to support clinical trial optimization and clinical trial decision making
Additional QSP models	IPFsym (Idiopathic pulmonary fibrosis) RADAsym (Acute radiation exposure)

Consulting Services

- Leveraging scientific skillsets of 70+ Ph.D. experts combined with software products to support model-based drug development
- Focused on lead selection, pharmacology, ADMET and DMPK, dose regimen, efficacy and safety
- Specific offerings include:
 - Population PK/PD data assembly, modeling, simulation, analysis and regulatory submission
 - PBPK modeling and simulation
 - Liver and kidney safety modeling and analysis
 - QSP/QST modeling support and analysis
 - AI drug candidate prioritization
 - Global regulatory strategies
 - Regulatory and scientific writing

Virtual crossover trials to establish drug product specification after manufacturing changes

- Janssen changed the manufacturing process to improve efficiencies with scale-up techniques post approval
- FDA requested clinical study to confirm bioequivalence
- Built and validated the baseline model in GastroPlus[®] using existing clinical data from previously approved lots
- Assessed impact of formulation changes; defined drug product specifications
- Performed virtual trial simulations in different populations to confirm bioequivalence
- FDA accepted the GastroPlus[®] modeling results, clinical study request was waived

API Lot	PE/NPE	Dose (mg)	AUC _∞ (ng.h/mL) (N=250)		C _{max} (ng/mL) (N=250)	
			GM	GMR (90% CI)	GM	GMR (90% CI)
Lot 5	PE	50	4180	113.3 (110.7, 116.1)	551	139.3 (136.0, 142.7)
Lot 1	NPE	50	3688		395	
Lot 5	PE	100	8242	103.0	551	106.4
Lot 3	NPE	100	8001	(100.9, 105.1)	395	(104.3, 108.6)
Lot 5	PE	300	24998	102.2 (99.8, 104.6)	3118	100.0 (97.7, 102.4)
Lot 2	NPE	300	24460		3117	
Lot 5	PE	100	8242	98.2	1068	95.1
Lot 4	NPE	100	8395	(96.2, 100.2)	1123	(93.2, 97.0)
Lot 5	PE	300	24998	101.9	3118	98.3
Lot 4	NPE	300	24525	(99.8, 104.1)	3171	(96.3, 100.4)

Virtual Bioequivalence Study Simulations

API: active pharmaceutical ingredient; AUCg; area under the plasma concentration-time curve from time 0 to infinite time; CI: confidence interval; Cma; maximum observed plasma concentration; GM: geometric mean; GMR: geometric mean ration; NPE: non-particle-engineered; PE: particle-engineered

Strategic Use of Modeling and Simulation: Case Study

In Silico Methods Improve the Probability of Phase 3 Success

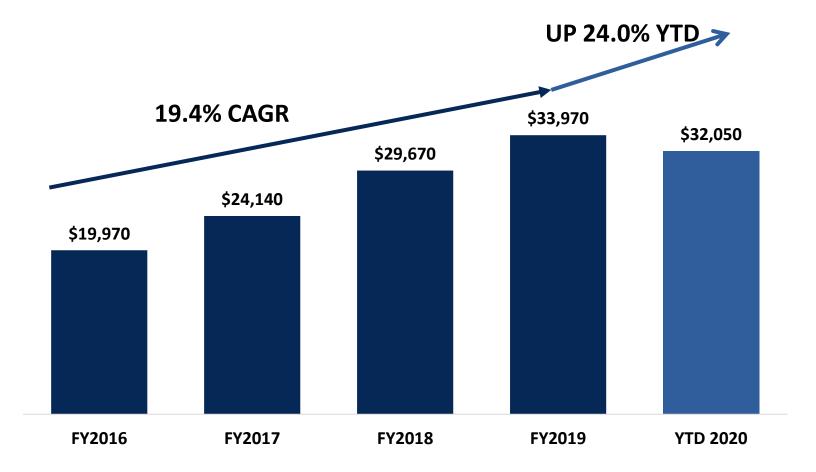
- Client with novel antibody for prophylactic use in competitive migraine market had Phase 3 development plan with predicted probability of success of <15%
- Iteratively developed model throughout Phase 1 & Phase 2
- Implemented model-based clinical trial simulation strategy to improve Phase 3 design
- Phase 3 trials demonstrated safety and efficacy in preventing migraine
- Months of development time and millions of dollars saved by avoiding failed Phase 3 trials, also reduced time to approval and market
- Reduced unnecessary burden on patients by evaluating multiple alternatives in silico before running trials

Strong Drivers of Revenue Growth

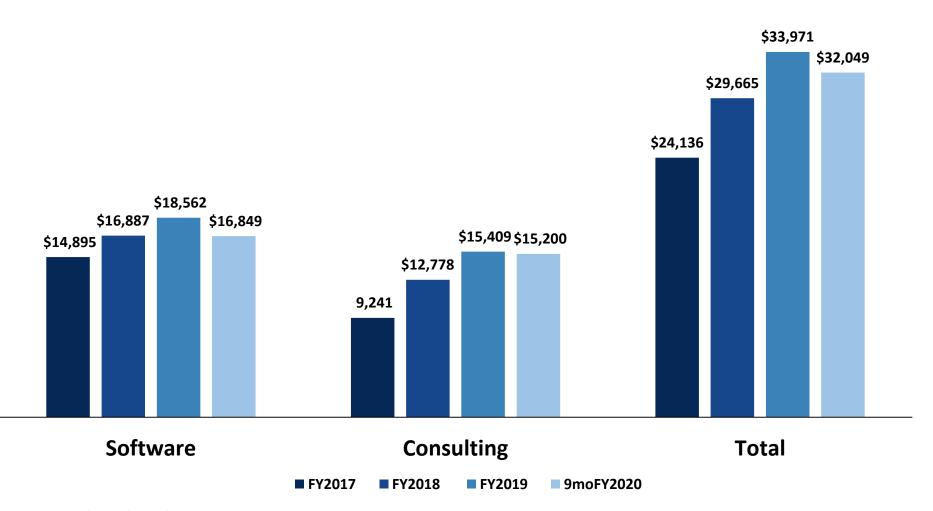
Increasing acceptance of modeling and simulation by FDA and drug industry

High customer satisfaction with ~95% software contract renewal rate (by fees)

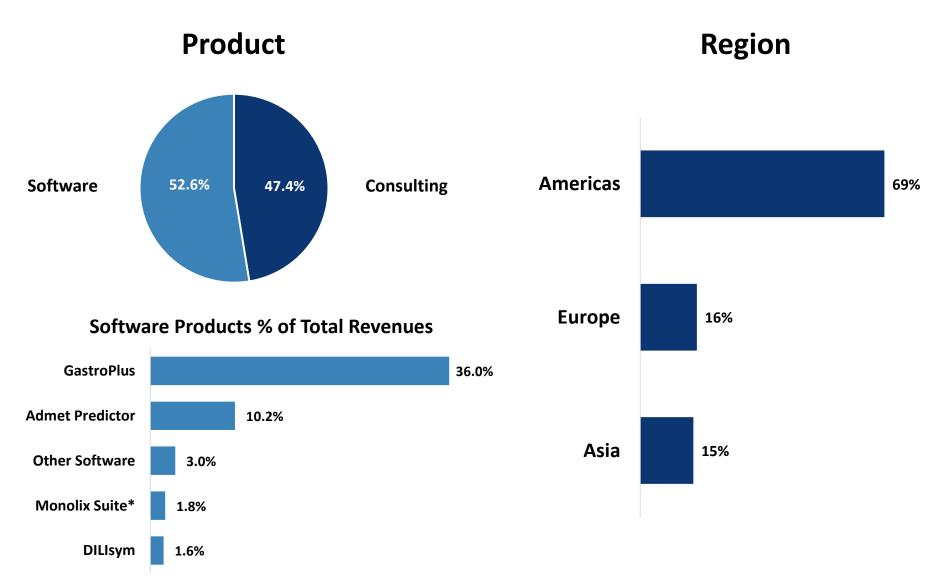
Recently improved and expanded sales infrastructure


Increasing opportunities for product and service cross-selling

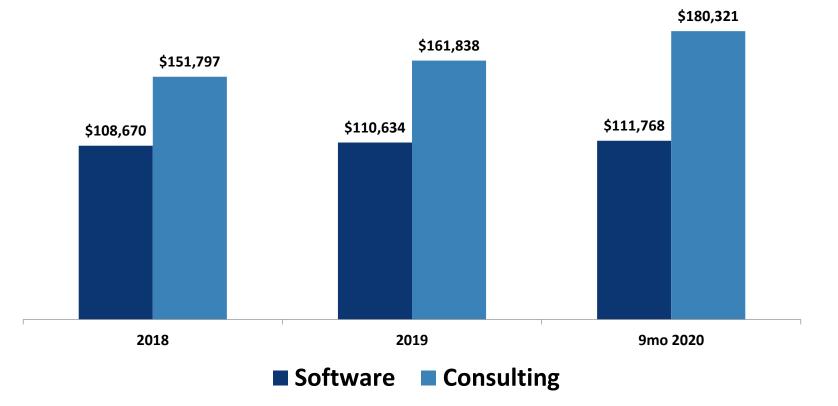
Steadily increasing industry R&D spend


Synergistic acquisitions

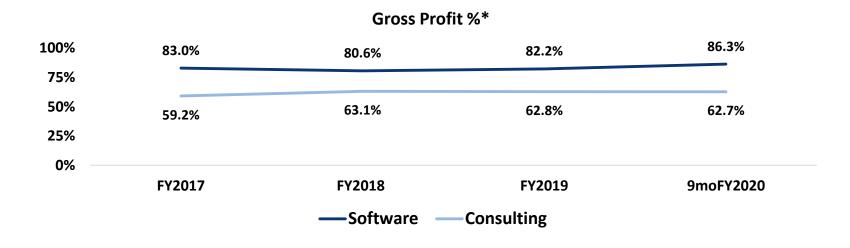
20%+ Revenue CAGR

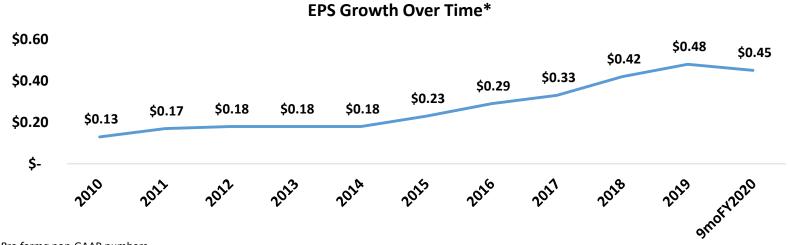

Strong Revenue Performance

Revenue by Product Category



Revenue Breakdown – 9 Months FY2020




Increasing Average Revenue per Customer

Attractive Margins Deliver Steady EPS Growth

Strategic Opportunities for Expansion and Growth

- Expand product offerings through opportunistic acquisitions
 - Fill gaps in the current product offerings
 - Focus on immediately or near-term accretive opportunities
 - Fragmented industry amenable to consolidation
- Further expand global sales reach
 - Increase sales effort to drive new customer growth in U.S., Europe and Asia
 - Expand client base in the small and mid-sized biotechnology space
 - Focus on cross-selling efforts to increase average revenue per customer
- Increase R&D investment to enhance existing models and develop new tools to broaden product offerings

Income Statement Summary

	9 Months Ended		
	May 31, 2020	May 31, 2019	
Income Statement			
Revenues	\$ 32,049,003	\$ 25,944,545	
Cost of revenues	7,974,702	6,734,890	
Gross margin	24,074,301	19,209,655	
Operating expenses			
Selling, general, and administrative	12,646,512	8,613,788	
Research and development	2,026,684	1,896,926	
Total operating expenses	14,673,197	10,510,714	
Income from operations	9,401,104	8,698,941	
Other income (expense)			
Interest income	27,814	20,296	
Interest expense	0	(109,078)	
Change in value of contingent consideration	(81,000)	0	
(Loss) income on currency exchange	1,283	(40,467)	
Total other income (expense)	(51,902)	(129,249)	
Income before provision for income taxes	9,349,202	8,569,692	
Provision for income taxes	(2,205,276)	(2,045,590)	
Net Income	\$ 7,143,925	\$ 6,524,102	

Financial Summary and Selected Financial Information

Nasdaq	SLP
Cash and Equivalents (6/30/20)	\$9.56 million
Borrowed Debt	\$0.0
Market Capitalization	>\$ 1.0B
Fully Diluted Shares Out (a/o 5/31/2020)	20.5M
Average Daily Trading Volume	~200,000

Management

Shawn O'Connor, CEO – Extensive experience in publicly-traded and privately-held software and services companies focused on R&D modeling in Pharmaceutical and Biotech industry. Served as president, chief executive officer, and a director of Entelos; former chairman, president, and chief executive officer of Pharsight Corporation; former CFO at Diasonics; Big 8 Accounting firm

John R. Kneisel, CFO – 30+ years of financial management and accounting-related services. Joined the Company in November 2013. Served as internal outsourced financial management services (CFO and Controller) to small- to medium-sized companies. Positions at Dreamhammer, Inc., Group 1 Automotive Inc, and leading CPA firms, including Good, Swartz, Brown & Berns, LLP

John A. DiBella, M.S., President, Lancaster Division – More than 16 years at Simulations Plus; M.S. and B.Sc. In Biomedical Engineering from Case Western Reserve University

Jill Fiedler-Kelly, M.S. FISoP, President of Cognigen – Co-founder of Cognigen with more than 25 years of experience in CRO industry

Brett Howell, Ph.D., President of DILIsym – Widely published and experienced researcher with extensive expertise in PBPK and PD model development

Jonathan Chauvin, Ph.D., President of Lixoft – Founder and developer of Lixoft. More than 15 years of industry experience

Michael Bolger, Ph.D., Chief Scientist – Original programmer of GastroPlus. Long academic career at USC with more than 50 peer-reviewed publications. Prior to joining SLP, was scientist at FDA. Co-founded CoCensys, Inc.

Investment Highlights

- Provider of innovative modeling and simulation software and consulting services focused on pharmaceutical and biotechnology companies
 - Solutions from early discovery through regulatory approval
- Pure play in the in silico drug discovery space
- Growing acceptance of technology by regulators and industry with supportive guidance issued by the FDA
- Products have the potential to reduce drug development costs and time while improving success rates
- Steady growth in pharmaceutical industry R&D expenditures provides expanding target market
 - ~\$170B in 2020 growing around 3% per year¹
- Ten-year track record of consistent revenue and profitability growth
 - Recent revenue CAGR of 20%+

¹ EvaluatePharma[®] World Preview 2017, Outlook to 2022, 10th Edition, June 2017, p. 19

² *J Health Econ*. 2016 May;47:20-33.

³ Brochure: "Biopharmaceutical Research and Development: The Process Behind New Medicines". PhRMA. <u>http://phrma-</u> <u>docs.phrma.org/sites/default/files/pdf/rd_brochure_022307.pdf</u>.