Physiologically Based Pharmacokinetic (PBPK) Modeling of Rifampicin and Its Application for Drug-Drug Interaction with Midazolam in Adults

W0930-05-26

PURPOSE

Rifampicin (RIF) is an essential part of tuberculosis therapy and the pharmacokinetics (PK) of RIF has been of interest due to its non-linear and auto-induction behavior. RIF acts as a perpetrator, causing clinically relevant drug-drug interactions (DDIs) via induction and inhibition of multiple metabolic enzymes and transporters.

OBJECTIVE(S)

The purpose was to develop a mechanistic PBPK model for RIF which accounts for all the relevant mechanisms after intravenous (IV) and oral (PO) administration in healthy and tuberculosis (TB) subjects. This model was first validated against single and multiple RIF dosing studies and further validation using sensitive CYP3A4 substrate Midazolam (MDZ) simulating the effect of RIF on MDZ PK.

METHOD(S)

The PBPKPlus[™] module in GastroPlus ® v.9.8.2 was used to model the PK of RIF. The Advanced Compartmental Absorption and Transit (ACAT[™]) model was used to describe the intestinal dissolution, absorption, and metabolism of RIF after PO administration. Human physiologies were generated by the program's internal Population Estimates for Age-Related (PEAR[™]) physiology[™] module. Tissue/plasma partition coefficients (Kps) for all the compounds were calculated using the Lukacova algorithm based on tissue composition along with *in vitro* and *in silico* physiochemical properties. The biopharmaceutical parameters for RIF were obtained from literature or predicted by ADMET Predictor® v10.2. Steadystate volume of distribution (Vdss) was adjusted to match IV noncompartmental Vdss by changing the log P value to 1.5 to calculate the Kp values and then returned to 1.3 for simulations. In addition, the *in vitro* drug permeability from a parallel artificial membrane permeability assay (PAMPA) was converted to human jejunal P_{eff} and then scaled up by 6.2-fold in order to fit the absorption phase [1]. The metabolism of RIF mediated by CYP3A4 was modelled using *in vitro* K_{mu} and the adjusted V_{max} and the enzyme kinetics were fitted for UGT1A3 [1-2] and the GastroPlus built-in expression levels of both enzymes in gut and liver. To account for the deacetylation of RIF linear systemic clearance of 20 L/h was added to liver. The hepatic uptake of RIF mediated by OATP1B1 was modeled using in vitro K_m and V_{max} obtained from literature and a fitted relative activity factor (RAF) of 0.28 [3]. RIF is also a substrate for the hepatic and renal apical efflux transporter MRP2 [4]. The enzyme and transporter K_m and V_{max} values used in the final RIF model are summarized in Table 1. The DDI module in GastroPlus was used to predict the autoinduction and inhibition of RIF and its effect on midazolam PK for varying doses of RIF and MDZ and administration times [13 – 19]. Table 1 presents the *in vitro* and the fitted enzyme and transporter kinetic parameters. Table 2 presents the induction and inhibition parameters of enzymes and transporters for RIF.

RESULT(S)

Table 1: Key Enzyme and Transporter Kinetic parameters for RIF used in GastroPlus[®] Simulations

CYP

Additio

OAT OATP

RAF Fa

MR

* Used 0.6 mg protein/million cells to convert transporter Vmax values

Suvarchala Avvari, Ke Szeto, Viera Lukacova, Michael B. Bolger,

Grace Fraczkiewicz, Revathi Chapa, Tarang Vora

Simulations Plus, Inc., Lancaster, California, USA

me/Transporter parameter	Value	Reference		
BA4 <i>in vitro</i> K _m , _u	16.2 µM (13.3 mg/mL)	[1]		
YP 3A4 V _{max}	0.171 nmol/min/mg Prot.	Fitted		
GT 1A3 K _m , _u	1.62 µM	Fitted		
GT 1A3 V _{max}	0.048 nmol/min/mg Prot.	Fitted		
nal Linear unbound CL _{int} (Liver)	20 L/h	Fitted		
1B1 <i>in vitro</i> K _m , _u	1.5 ± 0.6 μM	[3]		
1B1 <i>in vitro</i> V _{max}	9.3 ± 1.3 pmol/min/mg Prot.*	[3]		
ctor for OATP1B1	0.28	Fitted		
P2 in vitro K _m , _u	0.87 µM	Assume the MRP2 K _{m,u} is equal to the <i>in vitro</i> K _i value		
MRP2 V _{max}	13.15 pmol/min/mg MRP2*	Fitted		

Table 2 : Induction and Inhibition parameters of Enzymes and **Transporters for Rifampicin**

Parameter	Value	Ref
Induction *CYP 3A4 in vitro EC50,total,Hep	64 nM	[5]
*CYP 3A4 Emax	15	Fitted
*UGT 1A3 in vitro EC50,total,Hep	64 nM	[5]
*UGT 1A3 Emax	4.4	[6]
UGT 2B7 in vitro EC50,total,Hep	64 nM	[5]
UGT 2B7 Emax	4.4	[6]
Inhibition *CYP 3A4 Ki,u	18.5 µM	[7]
*OATP1B1 Ki,u	0.62 µM	[8]
*MRP2 Ki,u	0.87 µM	[4]
MRP3 Ki,total,HLM	108 µM	[10]

* Parameters important for the auto-induction and inhibition behavior of Rifampicin

 Table 3: Model Development and Validation: Comparison of
Simulated and Observed PK Parameters of Rifampicin after (IV) and (PO) Administration in Healthy Subjects and Patients with Tuberculosis.

IF Dose (mg)	PK Parameter	Obs	Sim	Fold Error	Ref
inf 300 mg for	Cmax (µg/mL)	NA	6.41	NA	[11]
3 hrs	AUC(0-inf) (µg_h/mL)	17.6 ± 9.6	37.46	2.12	
inf 450 mg for 3 hrs	Cmax (ug/mL)	NA	9.71	NA	[11]
	AUC(0-inf) (µg _ h/mL)	50.4 ± 21.6	57.55	1.14	
inf 600 mg for 3 hrs	Cmax (ug/mL)	NA	13.1	NA	[11]
	AUC(0-inf) (µg _ h/mL)	64.1 ± 14.2	78.88	1.23	
0 mg, IR tablet	Cmax (ug/mL)	13.6 ± 3.96	12.15	0.89	[12]
	AUC(0-inf) (µg _ h/mL)	79.8 ± 27.4	75.38	0.94	
inf 600mg for 60min Day1	Cmax (µg/mL)	NA	31.83	NA	[13]*
	AUC(0-inf) (µg _ h/mL)	108.7 ± 31.4	101.8	0.94	
inf 600mg for 0min, Day22	Cmax (µg/mL)	NA	31.8	NA	[13]*
	AUC(0-inf) (µg_h/mL)	69.9 ± 28.5	65.25	0.93	
0 mg, PO Day 2	Cmax (µg/mL)	NA	15.74	NA	[13]*
	AUC(0-inf) (µg_h/mL)	116 ± 29.2	86.71	0.75	
0 mg, PO Day 23	Cmax (µg/mL)	NA	NA	NA	[13]*
	AUC(0-inf) (µg_h/mL)	81.3 ± 24.2	50.37	0.62	

*Experimental Data for Subject 4 (Tuberculosis subjects); IR – Immediate release

Figure 1 : Goodness of Fit Plot: Comparison of Predicted versus observed DDI plasma Peak concentration ratio (C_{max}) for Midazolam administered alone and with RIF [14 – 19]

Figure 2 : Goodness of Fit Plot: Comparison of Predicted versus observed DDI AUC_{0 inf} ratio for Midazolam administered alone and with RIF [14 – 19]

Correlation of predicted and observed drug-drug interaction (DDI) ratios for maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC) of all the studies. Fig 1 illustrates the DDI Cmax ratios and Fig 2 illustrates the DDI AUC ratios of Rifampicin- Midazolam DDIs. The straight green line marks the line of identity. The red lines indicate 2-fold acceptance limits. The curved black lines show the prediction success limits suggested by Guest et. al (Guest EJ. Et al., DMD. (2011) 39 :170) Note: Several studies did not report C_{max} values before and after the RIF treatment.

CONCLUSION(S)

This work aimed to develop a RIF PBPK model and demonstrate the use of GastroPlus PBPK approach to predict the potential DDI interactions between RIF and MDZ. The overall results presented in Figures 1 & 2 show that the model accurately predicts the interaction effect of RIF for both IV and PO MDZ dosage forms. In conclusion, the GastroPlus PBPK approach, integrating all relevant physicochemical processes, perpetrator mechanisms, and physiological details is a highly reliable utility to estimate the potential of DDIs.

REFERENCE

- 1. Baneyx G. et al., Eur. J. Pharm. Sci. (2014) 56:1
- 2. Nakagawa K. et al., Tuberculosis. (1981) 56(12): 577
- 3. Tirona RG. Et al., J. Pharmacol. Exp. Therap., (2003) 304(1):223
- 4. Yoshikado T. et al., CPT Pharmacomet. Sys. Pharmacol. (2018) 7(11):739
- 5. Asaumi, CPTPharmacometSystPharmacol 2018;7:186
- 6. Moscovitz, JPET 2018;365(2):262
- 7. Kajosaari, Basic ClinPharmacolToxicol 2005;97:249
- 8. Takashima, JNuclMed 2012;53:741
- 9. Dong, Br J Pharmacol 2018;175;3486
- 10.Pedersen JM, Eur J Pharm Sci 2017;103(70)
- 11.Nitti, Chemotherapy 1977;23(1):1
- 12.Peloquin, Antimicrob Agents Chemother 1997;41(12)
- 13.Loos, KlinWochenschr 1985;63(23):1205
- 14.Kharasch, ClinPharmacolTher 2004;76(5):452
- 15.Backman, Clin Pharmacol Ther 1996;59(1) 16.Link B, Br J Clin Pharmacol 2008;66(4):473
- 17.Gorski, Clin Pharmacol Ther 2003;74(3):275
- 18.Kriby, DMD 2011;39(6):1070
- 19.Chung, Clin Pharmacol Ther 2006;79(4):350

