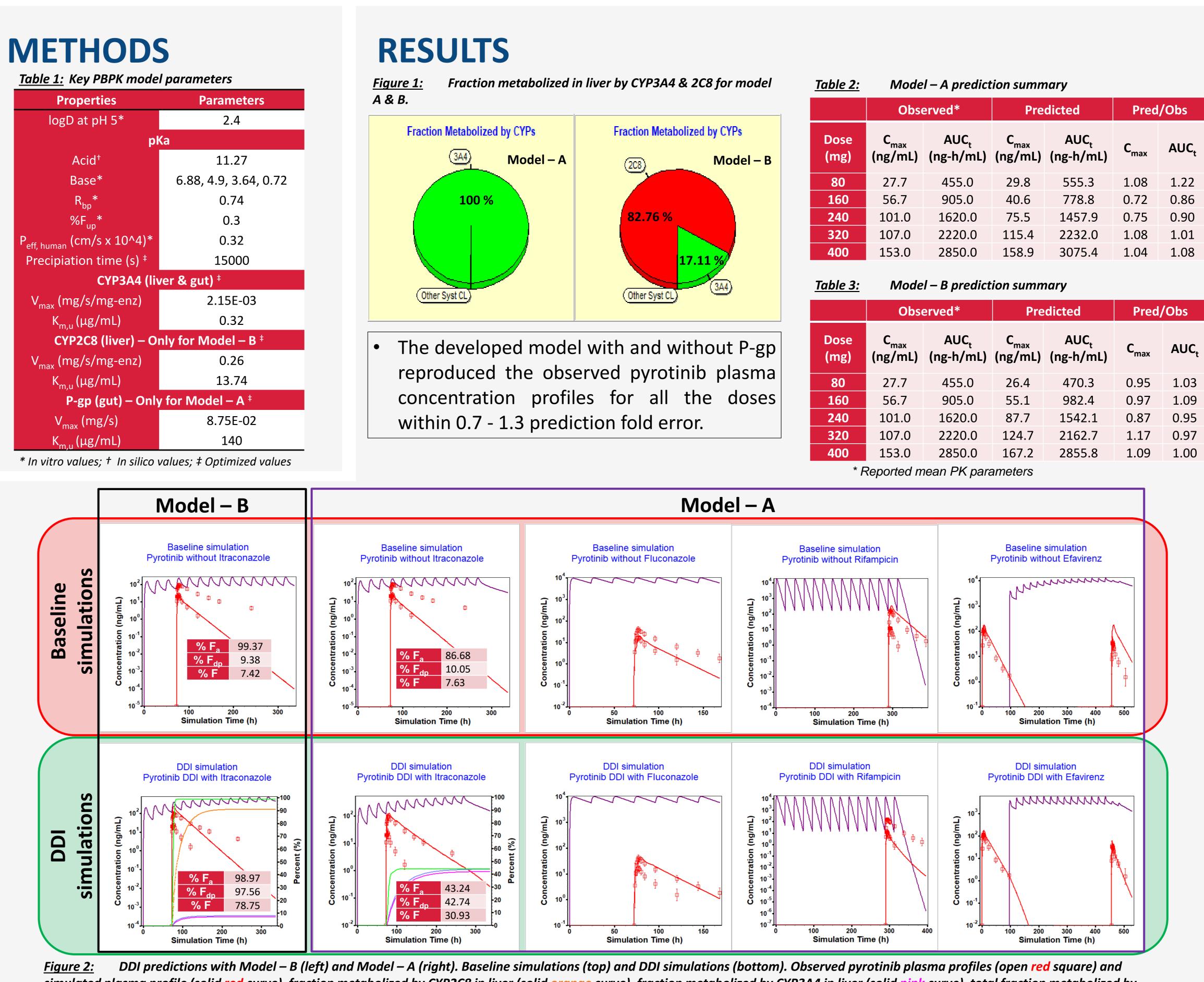
PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODELING OF PYROTINIB TO UNDERSTAND THE IMPACT OF INTERPLAY BETWEEN CYP3A4 AND P-GP ON ITS DDIS WITH CYP3A4 INHIBITORS/INDUCERS

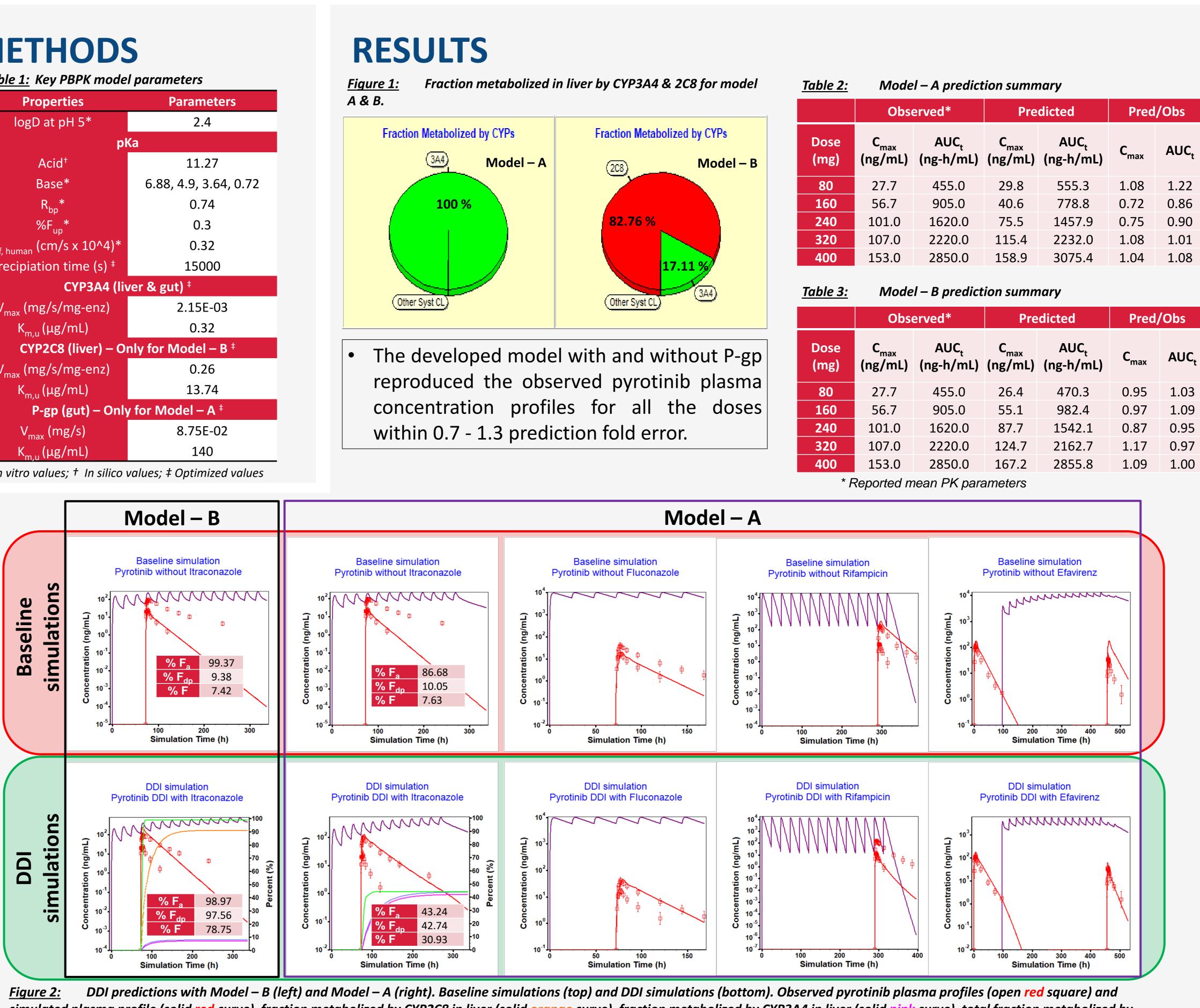
Tarang Vora¹, Grace Fraczkiewicz¹, Kaijing Zhao², Shaorong Li², Kai Shen², Miao Liu³, Nassim Djebli³, Shuyu Sun³ and Mingyan Zhou³

¹ Simulations Plus, Inc., Lancaster, CA, USA
² Department of Clinical Pharmacology, Jiangsu Hengrui Medicine Co. Ltd, Shanghai, P.R. China ³ Clinical Pharmacology & Early Development, Luzsana Biotechnology, Inc., Princeton, NJ, USA

CONTACT INFORMATION: tarang.vora@simulations-plus.com

BACKGROUND


- Pyrotinib is a novel and irreversible dual pan-ErbB and tyrosine kinase inhibitor developed for treating HER2-positive advanced solid tumors.
- Pyrotinib, a BCS Class III compound, is primarily metabolized by CYP3A4, and in vitro results suggested that it might be a substrate for P-gp efflux transporter.


OBJECTIVE

- To develop a PBPK model for pyrotinib and qualify it with the *in vivo* data obtained after oral administrations.
- Assess the pyrotinib DDI potential when coadministered with various CYP3A4 perpetrators (i.e., inhibitors/inducers), considering the interplay between CYP3A4 and P-gp.

METHODS

- A full PBPK model for pyrotinib was developed utilizing GastroPlus[®]v.9.8.2. The volume of distribution was calculated using Lukacova w/lysosomal binding method.
- Tissue: plasma partition coefficients for all tissues were calculated based on in vitro / in silico (ADMET[®] Predictor v10.0.0) physicochemical properties of pyrotinib.
- Pyrotinib is metabolized by CYP3A4 and CYP2C8. A sensitivity analysis was performed with P-gp efflux transporter in the gut (Model – A) and without Pgp (Model – B).
- Simulations for pyrotinib were performed to reproduce the observed DDI effects using both pyrotinib PBPK models.
 - 80 mg of pyrotinib with co-administration of CYP3A4 inhibitors itraconazole (200 mg once daily for 14 days) and fluconazole (400 mg on day 1 and 200 mg once daily from day 2 to day 13)
 - 400 mg of pyrotinib with co-administration of CYP3A4 inducer rifampicin (600 mg once daily for 14 days) and efavirenz (600 mg once daily for 16 days)
- The built-in PBPK models for perpetrator compounds that are part of the GastroPlus DDI library were used.

simulated plasma profile (solid red curve), fraction metabolized by CYP2C8 in liver (solid o CYP3A4 in liver & gut (solid purple curve), and total fraction absorbed (solid green curve)

Prediction accuracy comparison with Guest's criteria for DDI between pyrotinib, itraconazole, rifampicin, Table 4: fluconazole and efavirenz

		Ratio (DDI / Baseline)				Guest limits		
Victim	Perpetrator	Obs	Pred	Obs	Pred	Up Lim	Low Lim	Up Lir
		C _{max}		AUC _t		C _{max}		
Pyrotinib 80 mg*	ITC 200 mg	3.79	10.17	11.79	9.22	6.83	2.10	22.83
Pyrotinib 80 mg ⁺	ITC 200 mg	3.79	4.92	11.79	9.22	6.83	2.10	22.83
Pyrotinib 400 mg ⁺	RIF 600 mg	0.11	0.06	0.04	0.03	0.21	0.06	0.08
Pyrotinib 80 mg ⁺	Fluco 400/200 mg	2.40	2.25	3.57	2.94	4.05	1.42	6.39
Pyrotinib 400 mg ⁺	Efavi 600 mg	0.33	0.29	0.20	0.25	0.58	0.19	0.37

Model without P-gp transporter; † Model with P-gp transporter; ITC: Itraconazole; RIF: Rifampicin; Fluco: Fluconazole; Efavi: Efavirenz

ge curve), fraction metabolized by CYP3A4 in liver (solid pink curve), total fraction metabolized by

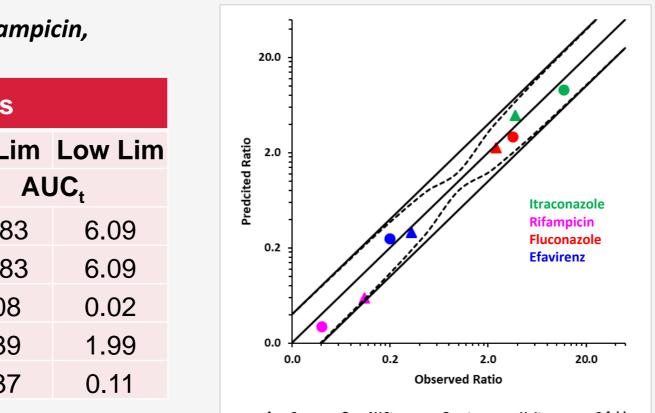


Figure 3: Pyrotinib DDI predictions with Model – A for C_{max} and AUC

• The DDI simulations by models – A and B predicted near to complete inhibition of gut metabolism, resulting in 0.5% & 1.4% fraction of drug metabolized in the gut, respectively, when co-administered with a CYP3A4 inhibitor. • The fraction absorbed (Fa) was reduced to 43% from 87% for the model – A in the presence of CYP3A4 inhibitor due to more effective efflux by P-gp, while the Fa for model – B (no P-gp) remained unchanged (99 %).

• The model – B without P-gp efflux transporter over-predicted the observed DDI with itraconazole by 2.68-fold for C_{max}, but AUC was reasonably matched (0.97-fold).

• In case of the model with P-gp efflux, DDI prediction with itraconazole was within 0.8 – 1.3fold for C_{max} and AUC.

• The DDI predictions with fluconazole, rifampicin, and efavirenz were within a 2-fold error and Guest limits for the model with P-gp (Table-4).

CONCLUSION • The PBPK model for pyrotinib accounting for P-gp efflux and CYP3A4 metabolism in the gut successfully explains the interplay between P-gp and CYP3A4. The model – A also supports that CYP3A4 is the primary enzyme for metabolism and CYP2C8 may have no or very minor contribution.

• A P-gp efflux plays a more significant role when the gut CYP3A4 is inhibited, resulting in lower Fa, and consequently in a lower DDI effect for C_{max} than AUC.

SimulationsPlus

www.simulations-plus.com

RESULTS

DARE TO HUMANCARE