

# Building a machine learning model for tautomer prediction

Marvin Waldman
Simulations Plus, Inc.
March 23, 2022

#### **Overview**

- Introduction
  - Motivation
  - Goals
- Dataset collection
  - Sources
  - Filters
  - Curation
- Training/Methodology
- Results
- Applications
- Interesting Examples
- Summary
- Acknowledgements



#### **Motivation**

- Many drug molecules exhibit tautomerism
  - Internal estimates with drug-like dataset find ~30% molecules have 2 or more tautomers
- Tautomeric state affects many properties
  - logP
  - solubility
  - permeability
  - activity
- Choice of tautomer affects both QSAR model building and model predictions

#### **Prior Art**

- Several rule-based or scoring methods have been proposed for standardizing the tautomeric form
  - Usually with the intent of producing the likely dominant tautomer
    - Oellien et al., J Chem Inf Model, 46 2342 (2006)
    - Milletti et al., J Chem Inf Model, 49 68 (2009)
    - Warr, W.A., J Comput Aided Mol Des, 24 497 (2010)
    - Sitzmann et al., J Comput Aided Mol Des, **24** 521 (2010)
    - Urbaczek et al., J Chem Inf Model **54** 756
  - Tautomeric preference can sometimes result from a complicated interplay of multiple factors leading to limitations in "simple" rule-based/scoring methods
    - Taylor, P.J.; Kenny, P.W., Figshare (2019), https://doi.org/10.6084/m9.figshare.8966276.v1



#### Goals

- Develop a machine learning model to predict tautomeric preference
  - Accuracy
  - Speed
- Uses
  - Tautomer standardization
  - Tautomer ranking

### **Approach**

- Collect a dataset of known tautomeric preferences from literature and public domain sources
- Leverage capabilities of ADMET Predictor® and ADMET Modeler™ to build an Artificial Neural Network Ensemble (ANNE) model based on molecular descriptors
- Augment with special descriptors and modeling methodologies as needed



#### **Dataset Construction**

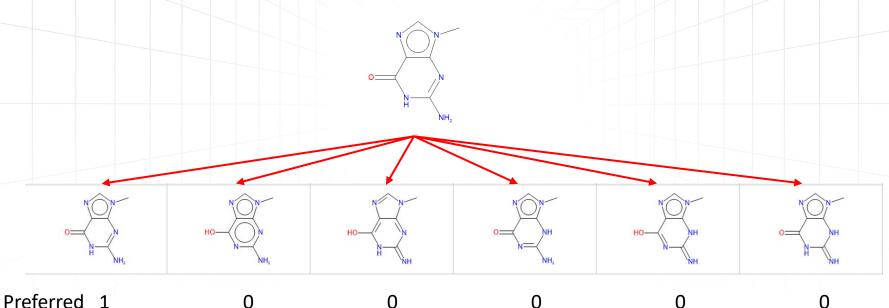
TautoBase\* + Internal collection

Exclude non-aqueous/gas-phase Include aq./solid-state/neat liquid

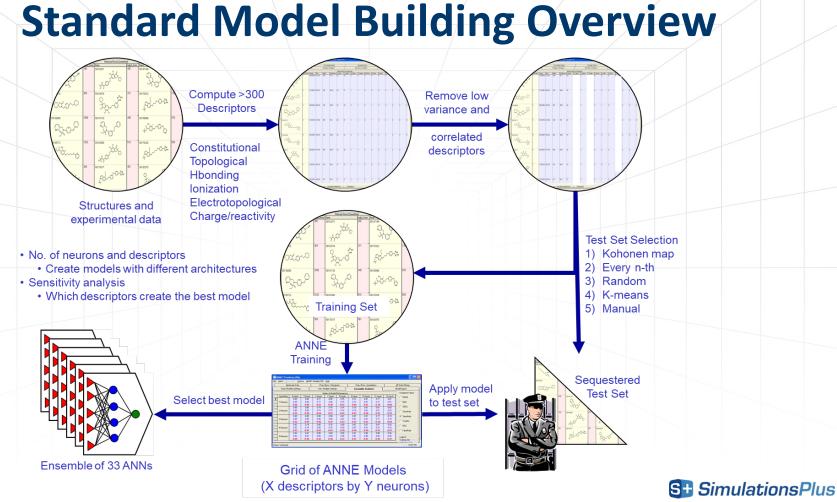
Exclude weakly dominant tautomers e.g.,  $logK_t \le 0.1$ 

Remove duplicates

Correct Errors (consult lit.)


→ 1529 molecules201 internal1127 TautoBase201 Addtl from lit.




<sup>\*</sup>Wahl, O.; Sander, T., J Chem Inf Model **60** 1085 (2020)

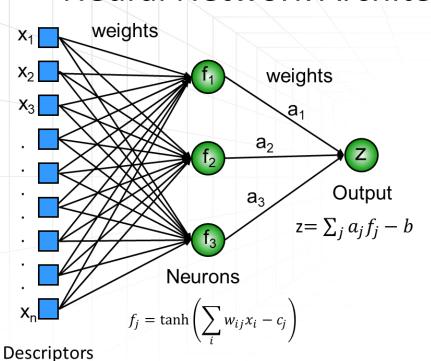
#### **Dataset Creation**

Use of ADMET Predictor to enumerate tautomers for the 1529 molecules led to 7251 tautomers



Simulations Plus
Cognigen | DILIsym Services | Lixoft




# **Specialized Model Building Details**

- Descriptors
  - Exclude tautomer-independent descriptors (e.g., N\_Carbons)
    - → ~200 descriptors
    - Add/augment descriptors important for tautomer preference\*
      - Anti-aromatic rings
      - dipole/dipole and lone-pair repulsions
      - Extensions to internal Hydrogen bonds
- Train/Test set partition
  - All tautomers of a given molecule assigned to train or test set exclusively
  - Partition train/test set using dominant tautomers only and then assign all tautomers of a given molecule to the same partition

St Simulations Plus
Cognigen DILlsym Services Lixoft

# **Training**

#### Neural Network Architecture



**Softmax Transformation** 

$$\sigma(z_k) = \frac{e^{z_k}}{\sum_{m=1}^{M} e^{z_m}}$$

Sum in denominator is over all tautomers of a given molecule z varies from  $-\infty$  to  $+\infty$   $\sigma$  varies from 0 to 1



# Training (cont'd)

#### "Modified" Cross-entropy Loss

$$\mathcal{L} = -\sum_{n=1}^{N} \log(\sigma_n)$$

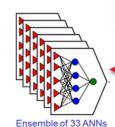
Sum is over preferred tautomers only.

#### Reasons:

- Labels are not independent.
  - Only one tautomer of a collection can be marked as "Preferred".
- Reduces effect of imbalance in the data.
- Non-dominant tautomers are not a "hard" 0

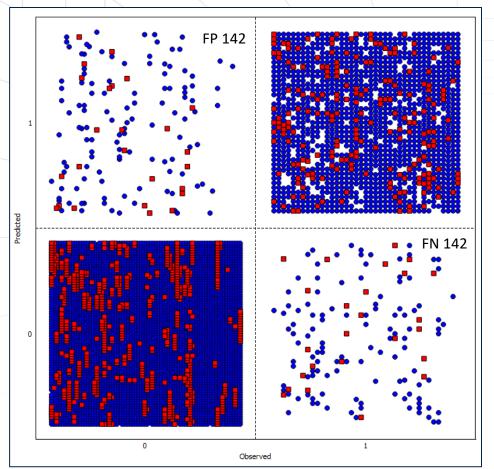
Minimize  $\mathcal{L}$  with respect to weights and bias terms




# **Model Building**

Grid of network architectures: neurons x descriptors

For each architecture:
Train 165 networks
Select best 33 (ensemble)
Average the 33 scores
Highest scoring tautomer is "Preferred"


| Youden     | 55 Inputs | 60 Inputs | 65 Inputs | 70 Inputs | 75 Inputs | 80 Inputs | 85 Inputs | 90 Inputs | 95 Inputs | 100 Inputs |
|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
|            | 0.79      | 0.79      | 0.79      | 0.79      | 0.81      | 0.81      | 0.81      | 0.82      | 0.81      | 0.81       |
| 2 Neurons  | -         | -         | -         | -         | -         | -         | -         | -         | -         | -          |
|            | 0.84      | 0.83      | 0.84      | 0.83      | 0.82      | 0.83      | 0.85      | 0.84      | 0.84      | 0.83       |
|            | 0.80      | 0.80      | 0.81      | 0.81      | 0.81      | 0.81      | 0.82      | 0.82      | 0.83      | 0.81       |
| 4 Neurons  | -         | -         |           | -         | 1,-1      | -         |           | -         | -         | -          |
|            | 0.83      | 0.84      | 0.85      | 0.87      | 0.87      | 0.87      | 0.86      | 0.86      | 0.87      | 0.86       |
|            | 0.80      | 0.81      | 0.82      | 0.82      | 0.83      | 0.83      | 0.83      | 0.84      | 0.82      | 0.83       |
| 6 Neurons  | -         | -         | -         | -         |           | -         | -         | -         | -         | -          |
|            | 0.85      | 0.87      | 0.88      | 0.86      | 0.86      | 0.86      | 0.86      | 0.87      | 0.87      | 0.86       |
|            | 0.80      | 0.82      | 0.83      | 0.82      | 0.83      | 0.83      | 0.82      | 0.83      | 0.83      | 0.83       |
| 8 Neurons  | -         | -         | -         | -         | -         | -         | -         | -:        | 2         | -          |
|            | 0.86      | 0.87      | 0.86      | 0.86      | 0.86      | 0.85      | 0.87      | 0.86      | 0.85      | 0.86       |
| 10 Neurons | 0.82      | 0.83      | 0.84      | 0.83      | 0.84      | 0.83      | 0.84      | 0.84      | 0.85      | 0.84       |
|            | -         | -         | -         | -         | -         | -         | -         | -         | -         | -          |
|            | 0.87      | 0.87      | 0.87      | 0.87      | 0.87      | 0.87      | 0.89      | 0.87      | 0.88      | 0.86       |

Select best ensemble model Fewest false negatives/positives for train and test sets



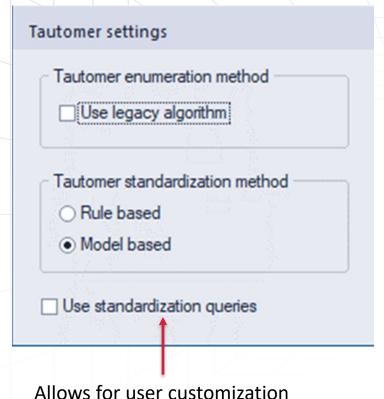


### Results



- Train
- Test

FN=FP because only 1 tautomer in a collection is marked/predicted as Preferred




# **Applications: Ranking/Scoring**

| Structure          | Identifier     | Tautomer_Score |       |
|--------------------|----------------|----------------|-------|
| O OH               | Aciclovir      | 0.792          | 0.792 |
| N O OH NH, NH,     | Aciclovir - T1 | 0.609          | 0.609 |
| N O OH             | Aciclovir - T2 | 0.242          | 0.242 |
| HO NH <sub>2</sub> | Aciclovir - T3 | 0.527          | 0.527 |
| HO OH              | Aciclovir - T4 | 0.166          | 0.166 |
| но                 | Aciclovir - T5 | 0.157          | 0.157 |

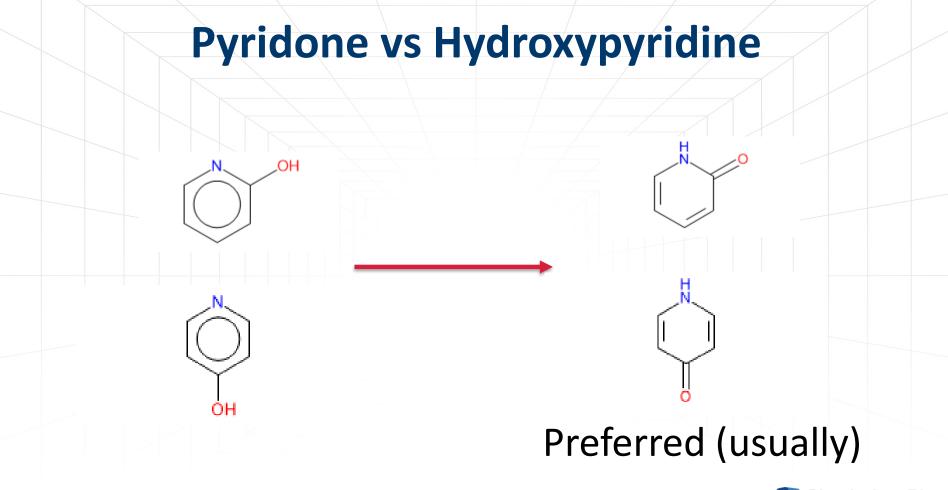


### **Applications: Tautomer Standardization**



| Legacy | Method | Queries | Incorrect<br>#Pref = 1529 |
|--------|--------|---------|---------------------------|
| On     | Rule   | On      | 318                       |
| On     | Rule   | Off     | 363                       |
| Off    | Rule   | On      | 355                       |
| Off    | Rule   | Off     | 397                       |
| On     | Model  | On      | 141                       |
| On     | Model  | Off     | 119                       |
| Off    | Model  | On      | 145                       |
| Off    | Model  | Off     | 123                       |
|        |        |         |                           |

Model based ~5 seconds 8 core i-7 2.6 GHz




# Some Interesting Examples Misses:

Preferred (model and rules)

Observed







# Pyridone vs Hydroxypyridine Except when ...

Preferred by rules

Preferred by model Observed



# Amide preferred over Enolamine Except when ...

Preferred by rules

Preferred by model Observed



## **Another Example**

$$\frac{1}{N}$$

Preferred by rules

Preferred by model Observed



### Sometimes the rules win

Preferred by model (even though anti-aromatic)

Preferred by rules Observed



# Sometimes the rules win Pyridone/Hydroxypyridine example

CI

Preferred by model

Preferred by rules Observed



#### **Possible Future Directions**

- Improved/customized descriptors
  - OO vs. NN lone pairs, OH-N vs C=O-HN H-bonds
- Deep learning/multi-layer networks
- More data



### **Summary**

- Machine Learning ANNE model for predicting tautomer preference has been built from a collection of literature data of ~1500 examples
- Model outperforms our rule-based method by better than a factor of 2 (based on no. incorrect)
- Can be used to standardize or rank tautomers for QSAR model building and other cheminformatics applications



# **Acknowledgements**

- David Miller
- Robert Fraczkiewicz
- Bob Clark
- Michael Lawless

