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KEY POINTS

� The DILI-sim Initiative is a public-private partnership that has applied quantitative systems
toxicology modeling to develop software (DILIsym�) that has improved mechanistic un-
derstanding of DILI.

� DILIsym incorporates pharmacokinetics and ability to alter key hepatocyte pathways to
predict the frequency and severity of liver injury by drugs in simulated patient populations.

� Although DILIsym has been largely tested on drugs whose liver safety liability is already
established, clinical trials are ongoing that will test its ability to prospectively predict liver
safety before clinical trials are conducted.

� DILIsym also has been useful in optimizing interpretation of traditional liver chemistry tests
and is incorporating new and promising biomarkers of liver injury.

� With further refinement of DILIsym, its predictions of liver safety may reduce the size of
clinical trials required to establish liver safety and also may be useful in the clinic in man-
aging DILI risk.
INTRODUCTION

Quantitative systems toxicology (QST) uses mathematical equations to recapitulate
relevant pathways whereby drugs or other chemicals can cause death to cells and or-
gans.1 The major QST effort currently is focused on drug-induced liver injury (DILI) is
the DILI-sim Initiative.2 This is a public-private partnership established in 2011 to un-
derstand and predict the liver safety liability of new drug candidates. It involves
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scientists from academia, the Food and Drug Administration (FDA), and pharmaceu-
tical companies and has funding commitments until at least 2021. Partners in the
Initiative vote to prioritize directions for the modeling, assuring that the software
addresses the most pressing needs in drug development.
In the DILI-sim Initiative, the pathways whereby drugs can injure the liver are repre-

sented using differential equations in submodels, which are connected with the
outcome of hepatocyte death and release of biomarkers into serum. Fig. 1 gives an
overview of the submodels. DILIsym is the brand name of the evolving model, which
is currently in version 8A. There are mouse, rat, and dog as well as human versions of
the model.3,4 The first drug modeled by the initiative was acetaminophen where oxida-
tive stress could account for toxicity observed with overdose in rodents and man. The
modeling was used to propose the optimal protocol for treatment of acetaminophen
overdoses with N-acetyl cysteine.5 The modeling was also then used to evaluate
several hypotheses for why the isomer of acetaminophen, 30-hydroxyacetanilide
(AMAP), which also generates reactive metabolites, is much less toxic than acetamin-
ophen in mice.6

The continued development of DILIsym has been based on data from many
exemplar drugs with varying liver safety profiles, including drugs that had discor-
dant results in preclinical and clinical testing. Exemplar drugs chosen for modeling
Fig. 1. Submodels in DILIsym. Submodels for hepatocellular injury include production of
reactive metabolites, generation of reactive oxygen species (oxidative stress), mitochondrial
dysfunction and accumulation of toxic bile acids within the hepatocytes, lipotoxicity, and
activation of an innate immune response. These processes are integrated with the potential
outcome of hepatocyte death by either apoptosis or necrosis, resulting in different rates of
release of traditional and experimental biomarkers into blood. The model also includes
some adaptation mechanisms that reduce injury, including Farnesoid X receptor activation
by bile acid accumulation, mitochondrial biogenesis initiated by adenosine triphosphate
reduction, nuclear factor erythroid 2–related factor 2 response to oxidative stress. Hepato-
cyte regeneration to compensate for hepatocyte loss is incorporated in the model, and the
functioning hepatocyte mass determines global liver function at any point in time. When
loss of hepatocyte mass reaches 30%, the predicted serum bilirubin rises due to loss of
global liver function. The modeling has suggested that the 3 mechanisms outlined in thick
boxes can account for hepatotoxicity in rats and man for more than 80% of the drugs in the
validation cohort tested to date. The current version of the model also includes injury to
cholangiocytes by inhibiting MDR3-mediated secretion of phospholipids into bile.
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have included drugs where relevant data were publicly available and also unpub-
lished data on drugs provided by the industry partners. To recapitulate the known
safety profile of each exemplar drug, the model parameters were optimized. Once
the model was optimized in this way, the Initiative began testing a new validation
set of drugs where the preclinical and clinical safety profiles were known. As of
May 2019, 68 molecules have been prospectively tested, with an 80% success
in correctly identifying the presence or absence of a liver safety liability at the
administered dosing (Brett Howell, personal communication, 2019). Among the
20% failures, all but 1 were predictions of safety with drugs that had exhibited
some degree of hepatotoxicity (ie, false negatives).
DATA INPUTS TO DILIsym

The way DILIsym is typically used to assess the liver safety of a drug is illustrated in
Fig. 2. Physiologically based pharmacokinetic (PBPK) modeling is created using
available pharmacokinetic data and other relevant data (eg, liver-to-blood ratio of
radioactivity in a rodent mass balance study) to estimate the time-dependent expo-
sure of the drug outside and inside the hepatocyte. If the drug is a known substrate
for uptake or efflux transporters, this fact is also taken into consideration in the
PBPK model.
The properties of the drug relevant to hepatotoxicity are then assessed with in vitro

systems. To screen for hepatocellular DILI potential, the drug is typically tested for its
concentration-dependent ability to (1) inhibit bile acid transporters and thereby raise
bile acid concentration in hepatocytes, (2) inhibit mitochondrial respiration, and (3)
cause oxidative stress. If major metabolites are available, these typically also undergo
these assays.
There are multiple hepatocyte transporters that can influence the intrahepatocyte

concentration of bile acids,7 and the ability of a drug to inhibit each of these trans-
porters is typically assayed. Some degree of inhibition of the bile salt export pump
(BSEP) seems to be generally required to cause hepatotoxicity based on alterations
in bile acid homeostasis, but the additional contribution resulting from inhibition of
the basolateral efflux transporters MRP3 and MRP4 can be substantial. Conversely,
inhibition of the major bile acid uptake pump, NTCP, would result in lowering of hepa-
tocyte concentration of bile acids. Many drugs that inhibit efflux transporters also
inhibit NTCP, creating a complex situation ideal for modeling.
The ability to inhibit mitochondrial respiration and to generate oxidative stress has

been typically measured in a human hepatoma cell line, HepG2, using the Seahorse
(Agilent Industries, Santa Clara, CA, United States) instrument and high content imag-
ing, respectively. Because lipotoxicity is an infrequent mechanism of DILI, this prop-
erty is assessed only if suspected. In addition to assessing the effect of the drug as
a function of media concentration, the intracellular drug (and metabolite) concentra-
tion is also assessed using mass spectroscopy.
When modeling cholangiocyte injury, an assessment is made of the

concentration-dependent ability of the drug and metabolites to inhibit a canalicular
efflux transporter, multidrug-resistant protein 3 (MDR3). MDR3 transports into bile
phospholipids that are incorporated into micelles. There are growing data to sup-
port the idea that reduction in biliary phospholipid reduces encapsulation of bile
acids in micelles and that the resultant naked bile acids can be toxic to cholangio-
cytes.8 Cholangiocyte culture systems are currently being evaluated for the ability
to generate relevant data, reflecting direct toxicity of the drug/metabolite to
cholangiocytes.
 Copyright ©2019. Elsevier Inc. All rights reserved.



Fig. 2. Data inputs for theDILIsymmodel for hepatocellular DILI. Extrahepatocyte and intrahe-
patocyte exposure to study drug is assessed by PBPK modeling and other available data (see
text). The dose-dependent effects of drug and major metabolites then are assessed on (1) bile
acid transporters expressed in membrane vesicles, cell lines overexpressing transporters, or he-
patocytes; (2) mitochondrial respiration in hepatocytes or hepatocyte cell lines using the Sea-
horse instrument; and (3) reactive oxygen species (ROS) generation measured with high
content imaging also in hepatocyte cell lines or primary hepatocytes. The exposure estimates
and collected mechanistic data are put into the model, which will then predict the time-
dependentdeathofhepatocytesandhence thetime-dependent releaseofbiomarkers (typically
ALT) into serum inanaveragepatient. Inaddition,modeling canbeconducted inSimpops� that
havebeencreatedbychangingparameters in themodel tocapture interpatient variationdueto
geneticornongenetic factors. Thus,estimates canbemadeof thefrequencyaswell as theextent
of liver injury in a specific patient population targeted to receive the drug. If a drug causes ele-
vations in liver injury biomarkers, hepatotoxicity canbeminimizedor eliminated in the Simpops
by varying dose and liver chemistry monitoring parameters. This modeling has been helpful in
designing clinical trials of new drug candidates (see text). (FromWatkins PB. The DILI-sim Initia-
tive: Insights into Hepatotoxicity Mechanisms and Biomarker Interpretation. Clinical and trans-
lational science. 2019;12(2):122-9; with permission.)

Watkins52
The methods chosen to gather the data necessary for predictive modeling have
been chosen by the DILI-sim Initiative partners because these methods are commer-
cially available if not already up and running in their organizations.

Data Outputs from DILIsym

When the compound data collected are input into the model, together with estimates
of the time-dependent concentration of the drug and major metabolites outside and
 Copyright ©2019. Elsevier Inc. All rights reserved.
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inside hepatocytes, the model then predicts the time-dependent death of hepatocytes
and hence the time-dependent release of certain biomarkers into serum (see Fig. 1).
The biomarker of most interest is generally serum alanine aminotransferase (ALT)
because this is the most specific and sensitive among traditional biomarkers for hepa-
tocyte death. Time-dependent changes in total bilirubin are also estimated based on
the predicted loss of hepatocyte mass. In the model, bilirubin elevations to greater
than 2-times the upper limit of normal (ULN) occur when the viable fraction of hepato-
cytes falls below 70%, a figure based on liver biopsy data obtained from patients
experiencing liver injury due to acetaminophen overdose.9 Experimental bio-
markers,10 including glutamate dehydrogenase, microRNA 122, full-length K18, and
the caspase-cleaved fragment of cytokeratin 18, are also data outputs from the
model, and incorporation of additional experimental biomarkers is planned.
The simplest output from DILIsym is predictions for an average healthy individual

but DILIsym also can display predictions for simulated patient populations. This is
done by varying parameters in the model to reflect interpatient variation in response
resulting from genetic or nongenetic factors. The simulated populations (Simpops�)
include patients with nonalcoholic steatohepatitis (NASH) and diabetes. Where
possible, the model parameters for the patient-specific populations are varied based
on experimental data, such as the reduction in activity in enzymes involved in mito-
chondrial oxidative phosphorylation observed in liver biopsies obtained from patients
with NASH.11 Other parameters have been varied to fit data obtained from clinical tri-
als involving the specific patient populations. New Simpops are planned for other
patient populations, including children.
In addition to graphs for predicted liver chemistries over time, DILIsym can display

predictions in evaluation of drug-induced serious hepatotoxicity (eDISH) format.12

eDISH is now a standard way the FDA evaluates liver safety of new drug candidates,
generally from data obtained in phase 3 clinical trials. eDISH creates a graph, where,
for each subject in a clinical trial, the observed peak serum ALT value is plotted along
the X-axis and the observed peak serum bilirubin value along the Y-axis (ie, each sub-
ject is represented by a single point on the graph). Examples of eDISH graphs pre-
dicted by DILIsym are shown in Fig. 3. In this case, the modeling predicted that
liver injuries, including severe liver injuries (ie, Hy’s law cases), would be encountered
at high daily doses of the modeled drug. Safe dosing regimens, however, could be
predicted.

Identifying Dominant Mechanisms Underlying Drug-Induced Liver Injury

Once liver safety liability of a drug is predicted by DILIsym, it is possible to identify
which of the 3 mechanisms is contributing most to the predicted toxicity. This is
done by simply turning off each mechanism in the model, 1 at a time, and observing
the effect this has on the predicted frequency of serum ALT elevations in the Simpops.
Typically, no 1 mechanism accounts for the predicted toxicity and there are instances
where at least 2 mechanismsmust be operative to produce any toxicity.13 There are as
yet unpublished examples of where identifying the major mechanism underlying
the toxicity of a drug has explained drug-drug interactions associated with increased
frequency of elevations in serum ALT in clinical trials (Brett Howell, personal
communication).
The prominence of the 3 mechanisms in accounting for toxicity is remarkable

because none directly takes into account some DILI mechanisms that generally are
recognized to be important, such as reactive metabolite production14 and endo-
plasmic reticulum stress.15 Such mechanisms may account for the approximately
20% failure rate of the current model predictions and addition of new mechanisms
 Copyright ©2019. Elsevier Inc. All rights reserved.



Fig. 3. eDISH output from DILIsym modeling of hepatocellular injury in a simulated patient
population treated with drug A. eDISH is the method typically used to assess liver safety in
large clinical trials. Each dot represents a subject in the clinical trial and the location of the
dot on the eDISH plot corresponds to the peak serum ALT (X-axis) and total serum bilirubin
(Y-axis) observed in that subject. The graph is divided into 5 quadrants by a vertical line at
the value of 3-times the ULN for ALT and a horizontal line at the value of 2-times the ULN for
bilirubin. At the modeled 1-times the dose daily for 12 weeks, no simulated patients expe-
rienced a rise in serum ALT (the dots correspond to <1-times the ULN [10o]). At 2-times the
dose, 1 simulated subject experienced a rise in serum ALT greater than ULN but less than
3-times the ULN. At 5-times the dose, several simulated subjects experienced ALT elevations,
and 1 subject reached greater than 3-times the ULN. This subject did not experience global
liver dysfunction sufficient to result in an elevation in serum total bilirubin greater than
2-times the ULN and subject’s point, therefore, appears in the right lower quadrant (also
call Temple’s corollary quadrant). At the 10-times dose, however, 2 simulated patients
appear in the right upper quadrant (Hy’s law quadrant) indicating sufficient loss of hepato-
cytes to cause global liver dysfunction. TBIL, total bilirubin.

Watkins54
to DILIsym is likely in the future. It also is possible that there exist correlations with the
mechanisms in the model such that those left out are indirectly taken into account. For
example, a reactive metabolite may produce oxidative stress and oxidative stress can
result in endoplasmic reticulum stress. Parent and major metabolites have been
routinely tested in a human hepatoma cell line (Hep G2), which lack most of the
drug metabolism capability of hepatocytes. The role of unrecognized metabolites,
therefore, may account in part for DILIsym’s 20% prediction failure rate. The Initiative
 Copyright ©2019. Elsevier Inc. All rights reserved.
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has begun to collect mitochondrial inhibition and oxidative stress data in culture sys-
tems containing primary human hepatocytes or a hepatoma cell line that maintains
most of the metabolic capacity of human hepatocytes (HepaRG) (with and without
addition of nonparenchymal cells). In 1 case involving a molecule that was not pre-
dicted to be hepatototoxic by the current DILIsym inputs (see Fig. 2), time-
dependent appearance of oxidative stress was noted in cultures of primary human
hepatocyte, likely reflecting a role for unrecognized metabolites (Merrie Mosedale,
personal communication).

Mechanistic Insights

Several major insights regarding hepatoxicity mechanisms have evolved from
the Initiative. These include importance of the mechanism underlying inhibition of
bile acid transporters. When a drug is a competitive inhibitor of bile acid transporters,
such as BSEP, as the hepatocyte concentration of the bile acids rises, the bile acids
can out-compete the inhibitor to reduce the likelihood that toxic concentrations of bile
acids in the hepatocyte will be achieved. In contrast, bile acids will be less able to
override noncompetitive inhibition, and toxic concentrations are more likely to be
achieved. The typically assessed concentration causing 50% inhibition of bile acid
transport (IC50) does not identify mechanism of inhibition.
An example of where mechanism of inhibition of transporters was shown to be

important in toxicity prediction involved an Amgen development program (Thousand
Oaks, California). AMG 009 was a new drug candidate that demonstrated no liver
safety signals in rat, dog, or monkey. Dose-dependent elevations in serum ALT, how-
ever, were observed in the phase 1 multiple dose-escalation clinical trial stopping clin-
ical development. The program’s backup drug, AMG 853, which also had clean
preclinical toxicology studies, was advanced into clinical development and no liver
safety signals were observed. Retrospective investigation revealed that both drugs
were potent inhibitors of BSEP, which is the major transporter of bile acids into bile.
When assessed by IC50, AMG 853 was a more potent inhibitor of BSEP than AMG
009. AMG 853 was determined, however, to be a competitive inhibitor of BSEP
whereas AMG 009 was a noncompetitive inhibitor of BSEP. There was no indication
that either drug caused oxidative stress or interfered with mitochondrial function.
The PBPK predictions of hepatocyte drug concentration together with the mechanistic
inhibition for BSEP, NTCP, and other efflux transporters of bile acids were determined
and loaded into DILIsym and the outputs examined. For AMG 009, the predicted time-
dependent and dose-dependent elevations in serum ALT were similar to those
observed in the phase 1 trial (ie, without any manipulation to the model parameters)
(Fig. 4). No ALT elevations greater than 3-times the ULN were predicted for AMG
853 (not shown), consistent with the clinical trial experience, and this was demon-
strated to be largely due the fact that AMG 853 was a competitive inhibitor of
BSEP. In addition, DILIsym modeling of both compounds in the rat version of DILIsym
predicted no liver injury consistent with the preclinical findings. The difference be-
tween rat and human toxicity of AMG 009 could be largely related to the inherently
less hepatotoxic profile of bile acids in the rat. This was the first example of importance
of the mechanism of transporter inhibition in assessing the hepatotoxic potential of a
new drug candidate, but there have since been others.13

The modeling also has provided novel insight into mechanisms underlying spe-
cies differences in susceptibility to hepatotoxicity16 and how structurally similar
drug can have markedly different mechanisms of hepatotoxicity.17 A more com-
plete review of mechanistic insights that have evolved from the DILI-sim Initiative
is available.18
 Copyright ©2019. Elsevier Inc. All rights reserved.



Fig. 4. Simulated serum ALT values (red) versus actual ALT values observed in the phase 1
clinical trials of AMG 009 (black) as a function of time on drug (A) and dose (B). Human_-
mito_BA_v3A_6 Simpops were used for the simulations (17 NASH-like patients were
excluded) and treatment stopped in the model when serum ALT exceeded 5-times the ULN.
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The Prospective Use of DILIsym in Drug Development

When the model predicts a new drug candidate will cause serum ALT elevations, it is
possible to vary the dosage to predict regimens that should minimize or eliminate ALT
elevations. In addition, if elimination of ALT elevations is not achieved at doses pre-
dicted to be effective, the model can predict the frequency of liver chemistry moni-
toring and appropriate stopping criteria based on ALT value to avoid serious liver
injury. The use of DILIsym in this way has been applied to several new drugs, including
an antibiotic.19

An increasingly frequent application of DILIsym has been the assessment of the
safety of next-in-class drugs when first-in-class drugs have had liver safety issues.
This has been demonstrated retrospectively with drug pairs known to have discordant
liver safety profiles. For example, DILIsym predicted the Parkinson treatment tolca-
pone to be hepatotoxic and that the next-in-class drug entacapone was safe.20 Like-
wise, the model predicted troglitazone to be hepatotoxic and that the next-in-class
drug pioglitazone was not.21 The discordant liver safety of these drug pairs was
already established; the use of the term, prediction, refers to the fact the model results
were not fitted to the known safety profiles but were the results that were produced by
the model without manipulation. A crucial test of the model is predictions made for
new drug candidates before they enter clinical trials.22 One such example involves 2
drugs to treat autosomal dominant polycystic kidney disease (ADPKD). The first-in-
class drug, tolvaptan, was predicted by DILIsym to be potentially hepatotoxic in these
patients whereas the next-in-class drug lixivaptan has been predicted by the model to
be safe for the liver in the dosing proposed for this population.23 Clinical trials of lixi-
vaptan in ADPKD patients are under way. There currently are several other prospec-
tive clinical trials of next-in-class drugs, with the dosing regimens predicted by
DILIsym to be safe.

Application of DILIsym to Improve Biomarker Interpretation

As discussed previously, DILIsym predicts the time-dependent death of hepatocytes
and the subsequent release into circulation of biomarkers, typically ALT, and also the
rise in serum bilirubin as an indicator of global liver dysfunction (see Fig. 1). Alterna-
tively, if serial assessments of serum ALT are available in an actual patients
 Copyright ©2019. Elsevier Inc. All rights reserved.
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experiencing hepatotoxicity, it is possible to fit the ALT kinetics to the model and,
thereby, estimate the percent hepatocyte loss that the patient experienced. DILIsym
actually creates a range of hepatocyte loss for a given ALT area under the curve,
reflecting published variation in the content of ALT per hepatocyte and variation in
the serum half-life of ALT. DILIsym was first used in this way to help interpret the sig-
nificance of high peak serum ALT elevations (to 1000 IU/L) observed in healthy adults
given a single injection of a toll-like receptor 5 agonist (a potential treatment of radia-
tion sickness).24 Although the peak serum ALT elevations observed exceeded 20-
times the ULN, the serum ALT values peaked quickly and then fell at approximately
the published half-life of the enzyme. This suggested a short duration of hepatocyte
death, and this was confirmed by the DILIsymmodeling. The peak hepatocyte fraction
lost was estimated to be less than 5% in the most affected volunteer. In more pro-
longed liver injuries, it is important that regeneration of hepatocytes in response to he-
patocyte loss is built into DILIsym, such that the functioning hepatocyte mass is
predicted at any point during and after resolution of ongoing hepatocyte death. The
modeling has shown that regeneration rate can be important in determining liver func-
tion, particularly during prolonged liver injuries.
An additional consideration is that the release of ALT per hepatocyte into blood is

reduced during apoptosis versus necrosis and this is built into the model. By simply
looking at the effect of switching mode of cell death in the model, it is possible to es-
timate the effect of the 2 cell death pathways on estimated hepatocyte loss. It also has
been proposed that during a DILI event, the proportions of apoptosis versus necrosis
can been estimated as the ratio of the caspase-cleaved fragment of cytokeratin 18 to
the full-length K18, termed, apoptotic index, and this ratio is incorporated into
DILIsym. The apoptotic index recently was used to estimate the peak loss of hepato-
cyte mass in healthy volunteers treated with alfa cimaglermin alfa,25 a biologic agent
proposed to treat congestive heart failure. In this case, the apoptotic index measured
in archived serum samples supported apoptosis as the primary mode of liver cell
death. The patient with the highest serum ALT peak value was predicted by DILIsym
to have a peak reduction in hepatocyte mass of 12.5%. This was an important obser-
vation because this subject also experienced a rise in serum bilirubin exceeding
2-times the ULN (ie, a Hy’s law case), prompting a clinical hold on the development
program. According to DILIsym, the maximal 12.5% loss of hepatocytes was not suf-
ficient to account for a rise in serum bilirubin. It was later shown that the rise in serum
bilirubin may be explained by on-target effects of the drug independent of toxicity.26

This modeling was presented as part of the regulatory communications aimed at
removing the clinical hold on further development of this drug.
In addition to loss-of-function hepatocyte mass, DILIsym can predict elevations in

direct and/or indirect bilirubin due to drug/metabolite inhibition of bilirubin transporters
or inhibition of UGT1A1.27 A more complete review of the use of DILIsym in biomarker
interpretation is available.24

Future Applications of DILIsym

DILIsym has shown success in predicting dose-dependent hepatotoxicity, including
species differences in susceptibility. A greater challenge is predicting the idiosyncratic
DILI results now believed to frequently involve immune an attack on the liver.28 Kupffer
cell and recruited macrophage activation (the innate immune response in Fig. 1) are
built into DILIsym.29 Activation of innate immune responses in DILIsym not only pro-
motes hepatocyte injury but also affects hepatocyte regeneration rates. It is now clear,
however, that many cases of DILI result from an adaptive immune attack on the liver.
Incorporation of adaptive immune responses in DILIsym has begun and is an area of
 Copyright ©2019. Elsevier Inc. All rights reserved.
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emphasis going forward. This modeling should provide novel insights into mecha-
nisms underlying idiosyncrasy as well as hepatotoxicity observed with immune
modulators, such as the checkpoint inhibitors.30

Although adaptive immune responses are clearly important, the current versions of
DILIsym successfully predicted the liver safety liability of 3 drugs that cause delayed
idiosyncratic DILI, tolvaptan,31 troglitazone,21 and TAK-875.13 This success supports
the generally accepted concept that initiation of an adaptive immune attack requires
drug-induced hepatocyte stress28 and that this stress may in at least some cases be
caused by the mechanisms already incorporated into DILIsym. Moreover, DILIsym
predicted the several-month latency to peak serum ALT values observed in the clinical
trials of troglitazone.21 This may suggest that delayed presentation of idiosyncratic
hepatotoxicity can occur without involving an adaptive immune response. Regardless
of the role of adaptive immunity in DILI, according to current concepts, drug regimens
predicted by DILIsym to not cause hepatotoxicity should have a reduced chance of
causing idiosyncratic DILI.
Looking farther into the future, DILIsym modeling may be able to reduce the size of

clinical trials needed to establish liver safety. Just like modeling of drug interactions
based on ability of drugs to induce or inhibit drug-metabolizing enzymes is increas-
ingly accepted in place of performing drug-drug interaction clinical trials, DILIsym
modeling in simulated patient populations ultimately may be accepted by regulators
in place of actual clinical safety trials. Finally, DILIsym may someday be useful to cli-
nicians in managing liver safety risks in their patients. If DILIsym modeling has already
been performed for a specific drug, it may be possible for a physician to access the
model through a smartphone, input patient specific data such as underlying diseases
(eg, NASH) or concomitant medications, and in return be given a quantitative assess-
ment of risk of DILI at various dosing regimens for that patient. DILIsym also may be
useful in identifying the culprit drug in a patient with DILI receiving multiple drugs that
have been modeled in DILIsym.

SUMMARY

DILIsym has evolved from a successful ongoing public-private partnership. It has
provided novel insight into mechanisms underlying DILI, including interpatient vari-
ation in susceptibility to DILI. It is increasingly used in decision making within
industry, and DILIsym modeling results are increasingly included in regulatory com-
munications. It seems likely that DILIsym and QST efforts focused on other organs
will improve the safety of new drugs while improving the efficiency of drug
development.
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