Successes and Failures of DILIsym Scott Q Siler (substituting for Paul Watkins) ACS Fall 2025 #### **Agenda** - Quantitative systems toxicology (QST) modeling of DILI - Successes of DILIsym - Current limitations of DILIsym and Future Directions ### Every method has limitations # Understanding those limitations allows for proper interpretation of results #### Two Primary Classifications of Drug Induced Liver Injury | Feature | Direct
hepatotoxicity | Idiosyncratic
hepatotoxicity | |-----------------|--|---| | Dose-dependence | Dose-dependent | Usually not dose-dependent | | Predictability | Predictable | Unpredictable | | Incidence | High incidence | Low incidence (rare) | | Latency | Short (hours to days) | Variable (days to weeks or even months) | | Mechanism | Direct toxicity of the drug or its metabolites | Complex interplay of genetic, immunological, and environmental factors, often involving an immune-mediated response | | Examples | Acetaminophen overdose | Amoxicillin-clavulanate, diclofenac | # QST Models Predict Tox via the Intersection Between Exposure, Mechanisms, and Inter-Patient Variability ## The History of DILIsym Shows the Ongoing Expansion of Capabilities...That Continues to Present Day ### **DILIsym Software Overview** - SimPops reflecting normal liver biochemistry and multiple disease states that affect liver - Adults and pediatrics (normal liver) - Rat, mouse, dog in addition to human - Essential cellular processes represented to multiple scales in interacting sub-models - Key intrinsic hepatocellular injury mechanisms - Cholangiocyte injury and adaptive immune response representations updated in DS11 - <u>~90</u> detailed representations of validation compounds with >80% success and <u>zero</u> <u>false positive predictions</u> - Single and combination drug therapies ### **DILIsym Utilizes Various Data Types to Inform Decisions** #### DILIsym on the Non-Clinical DILI Assessment List by FDA Received: 5 November 2024 Accepted: 6 January 2025 DOI: 10.1097/HEP.0000000000001281 #### REVIEW > ¹Indiana University School of Medicine, Indianapolis, Indiana, USA ²Office of New Drugs, United States Food and Drug Administration, Silver Spring, Maryland, USA ³Scientific Strategy for Catalyze360, Eli Lilly and Company, Indianapolis, Indiana, USA ⁴Medical Global Patient Safety, Eli Lilly and Company, Indianapolis, Indiana, USA ⁵UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA TABLE 3 Summary of nonclinical data assessed by DILI team at the U.S. Food and Drug Administration | Туре | Examples of sources | | | | |---|---|--|--|--| | In vitro | | | | | | Metabolic pathway | Dominant cytochromes, UDP | | | | | Lipophilicity | Log P | | | | | Reactive metabolite
formation | Glutathione trapping; time-
dependent CYP inhibition | | | | | Mitochondrial data | Mitochondrial injury/inhibition studies | | | | | Transporter inhibition | BSEP, MRP2, other drug
transporters | | | | | In vivo (animal toxicology studies) | | | | | | Blood tests | Liver enzyme, bilirubin elevations | | | | | Liver histopathology | Inflammation, necrosis, fibrosis, zone of liver injury | | | | | Computer or modeling-based (as available and/or upon request) | | | | | | QST | DILISym | | | | | QSAR | Analysis by DARS | | | | | Rule-of-2; DILI risk score | Analysis by NCTR | | | | Abbreviations: BSEP, bile salt export pump; CYPs, cytochrome P450 enzymes; DARS, FDA Division of Applied Regulatory Science; MRP2, multidrug resistance protein 2; NCTR, FDA National Center for Toxicological Research; QSAR, quantitative structure—activity relationship; UDP, uridine 5'-diphosphoglucuronosyltransferase. ### **DILIsym Performance Review – Level 1** Key Question: would the weight of evidence from the drug case and from the DILIsym results have led to the same overall conclusion regarding the presence or absence of a possible drug-induced liver injury liability for the compound? | Human
Simulation Scenarios | | Clinic | al Data | Sum | | |-------------------------------|----------------------|--------------------------|--------------------|--------------------------|--------------| | | | DILI | Clean | Suili | 28 | | DILIsym | DILI
Predicted | True positives 54 | False positives O | DILI predicted 54 | PPV:
100% | | Prediction | No DILI
Predicted | False negatives 17 | True negatives 24 | No DILI predicted 41 | NPV:
59% | | Su | m | DILI scenarios 71 | Clean scenarios 24 | Total scenarios 95 | | | | | Sensitivity: 76% | Specificity: 100% | | | 82% (78/95) unique human simulation scenarios predicted well *90 unique compounds *95 unique simulation scenarios *71 DILI scenarios, 24 clean scenarios ### Agenda Quantitative systems toxicology (QST) modeling of DILI Successes of DILIsym Current limitations of DILIsym and Future Directions ## The DILI-sim Consortium Has Ensured that DILIsym QST Model Development Aligns with Industry and Regulatory Needs #### **Excellent Scientific Advisory Board** #### **Current DILI-sim Members** For a comprehensive review of progress, see *Watkins 2020, Current Opinion in Toxicology (23-24:67-73)* #### Overall Goals - Improve patient safety - Reduce the need for animal testing - Reduce the costs and time necessary to develop new drugs #### History - Officially started in 2011 - 21 major pharmaceutical companies have participated - Members have provided compounds, data, and conducted experiments to support effort - Over \$10 million invested in project ### DILIsym Development and Use Has Advanced the Understanding of DILI - Primary mechanistic contributors to DILI - Interactions between mechanisms that underpin DILI - Contributions of adaptive responses to DILI - Quantification of the magnitude of perturbations required to elicit DILI - Quantification of amount of hepatocyte loss during DILI events - Identification of DILI-susceptible patient types #### **Numerous DILIsym Publications Over Time** U.S. FDA Renews Annual DILIsym Software Licenses FDA Maintains Access to Leading Liver Injury Software Program May 06, 2020 08:30 AM Eastern Daylight Time Application of the DILIsym® Quantitative Systems Toxicology drug-induced liver injury model to evaluate the carcinogenic hazard potential of acetaminophen Gary Eichenbaum ^{a,*}, Kyunghee Yang ^b, Yeshitila Gebremichael ^b, Brett A. Howell ^b, F. Jay Murray ^c, David Jacobson-Kram ^d, Hartmut Jaeschke ^e, Edwin Kuffner ^a, Cathy K. Gelotte John C.K. Lai ^f, Daniele Wikoff ^g, Evren Atillasoy ^f Quantitative Systems Toxicology Modeling Predicts that Redu Biliary Efflux Contributes to Tolvaptan Hepatotoxicity James J. Beaudoin, William J. Brock, Paul B. Watkins, Kim L. R. Brouwer 🔀 Mechanistic Investigations Support Liver Safety of Ubrogepant Brenda Smith,* Josh Rowe ,* ,1 Paul B. Watkins ,† Messoud Ashina,‡ Jeffrey L. Woodhead,§ Frank D. Sistare,¶ and Peter J. Goadsby|| Prediction of the liver safety profile of a first-in-class myeloperoxidase inhibitor using quantitative systems toxicology modeling Jeffrey L. Woodhead^a, Yeshi Gebremichael^b, Joyce Macwan^a, Irfan A. Qureshi^c, Richard Bertz^c, Victoria Wirtz^c and Brett A. Howell^a Modeling and Simulation of Acetaminophen Pharmacokinetics and Hepatic Biomarkers After Overdoses of Extended-Release and Immediate-Release Formulations in Healthy Adults Using the Quantitative Systems Toxicology Software Platform DILIsym Comparison of the Hepatotoxic Potential of Two Treatments for Autosomal-Dominant Polycystic Kidney Dis Using Quantitative Systems Toxicology Modeling Comparing the Liver Safety Profiles of 4 Next-Generation CGRP Receptor Antagonists to the Hepatotoxic CGRP Inhibitor Telcagepant Using Quantitative Systems Toxicology Modeling Jeffrey L. Woodhead, *1 Scott Q. Siler, * Brett A. Howell, * Paul B. Watkins , * Assessing Liver Effects of Cannabidiol and Valproate Alone and in Combination Using Quantitative Systems Toxicology Vinal V. Lakhani¹, Grant Generaux¹, Brett A. Howell¹, Diane M. Longo¹ and Paul B. Watkins^{2,3,*} Available online at www.sciencedirect.com ScienceDirect DILIsym: Quantitative systems toxicology impacting drug development Paul B. Watkins and Charles Conway[‡] Assessment of the Mechanism for Remdesivir-Associated Clinical ALT Elevations Using DILIsym Quantitative Systems Toxicology Modeling Kyunghee Yang', Brett A Howell', Joy Y. Feng', Darius Babusis', Tomas Cihlar', Scott Q Sile 'Dillism Services, Inc., a Simulations Plus Company, Research Triangle Park, NC; Political Sciences, Foster City, CA © Copyright 2025, Simulations Plus, Inc. All Rights Reserved First Approved Cancer Treatment for TGCT Included DILIsym Simulations in FDA Review FDA Review Cites DILIsym Results as Part of Turalio® Submission 2020 08:30 AM Eastern Daylight Time Pharm Res (2019) 36: 48 https://doi.org/10.1007/s11095-019-2582-y RESEARCH PAPER Analyzing the Mechanisms Behind Macrolide Antibiotic-Induced Liver Injury Using Quantitative Systems Toxicology Modeling ey L. Woodhead · Kyunghee Yang · David Oldach · Chris MacLauchlin · Quantitative Systems Toxicology Identifies ndependent Mechanisms for Hepatotoxicity and Bilirubin Elevations Due to AKR1C3 nhibitor BAY1128688 Quantitative systems toxicology (QST) reproduces species lifferences in PF-04895162 liver safety due to combined mitochondrial and bile acid toxicity Grant Generaux 1 | Vinal V. Lakhani 1 | Yuching Yang 1 | Sashi Nadanaciva 2 | Luping Qiu 3 | Keith Riccardi 4 | Li Di 4 | Brett A. Howell 1 | Scott Q. Siler 1 | Paul B. Watkins 5,6 | Hugh A. Barton 7 | Michael D. Aleo 3 | Lisl K. M. Shoda 1 | Quantitative Systems Toxicology Modeling Informed Safe Dose Selection of Emvododstat in Acute Myeloid Leukemia Patients Kyunghee Yang ^{1,*} , Ronald Kong ², Robert Spiegel ², John D. Baird ², Kylie O'Keefe ², Brett A. Howell ¹ and Paul B. Watkins ³ ### QST Modeling Informed Safe Dose Selection of Emvodostat in Acute Myeloid Leukemia (AML) Patients Case 2 - Clinical investigation of emvododstat for the treatment of solid tumors was halted after two patients experienced druginduced liver failure - Preclinical investigations supported that emvododstat at lower doses might be effective in treating AML patients - Retrospective DILIsym simulations adequately predicted the liver safety liabilities of emvododstat in solid tumor trials and prospective simulations predicted the liver safety of reduced doses in an AML clinical trial - Liver safety was confirmed in a subsequent clinical trial ### **Agenda** - Quantitative systems toxicology (QST) modeling of DILI - Successes of DILIsym - Current limitations of DILIsym and Future Directions ### **DILIsym Performance Review – Level 1** Key Question: would the weight of evidence from the drug case and from the DILIsym results have led to the same overall conclusion regarding the presence or absence of a possible drug-induced liver injury liability for the compound? | Human
Simulation Scenarios | | Clinica | al Data | Sum | | |-------------------------------|----------------------|--------------------------|---------------------------|--------------------------|------------| | | | DILI Clean | | Juili | | | DILIsym | DILI
Predicted | True positives 54 | False positives | DILI predicted 54 | PP\
100 | | Prediction | No DILI
Predicted | False negatives 17 | True negatives 24 | No DILI predicted 41 | NP' | | Su | ım | DILI scenarios 71 | Clean scenarios 24 | Total scenarios 95 | | | HII. | | Sensitivity: | Specificity: | | | 82% (78/95) unique human simulation scenarios predicted well *90 unique compounds ^{*95} unique simulation scenarios ^{*71} DILI scenarios, 24 clean scenarios #### Potential Reasons for DILIsym False Negative Predictions - Incomplete input datasets (including PBPK modeling) - Lack of toxicity signals in in vitro assays - Untracked but potentially toxic metabolite(s) - Potential alternate mechanisms - Population-specific susceptibility - Some cases may fit in more than one category ## Potential Reasons for DILIsym False Negative Predictions: Incomplete Input Datasets - Prescribed DILIsym input data includes: - Preclinical/clinical PK data to develop and validate PBPK models - In vitro assays to determine drug effects on key intrinsic toxicity pathways: oxidative stress, mitochondrial dysfunction, bile acid transporter inhibition - Not all compounds had prescribed input datasets - Compound L hepatic exposure was inferred using a liver partition coefficient (PBPK model was not developed) - Standard in vitro toxicity assays were not performed for crizotinib - Collection of complete standard input datasets recommended to increase predictivity | Drug | Exposure | Mito | BA | ROS/RNS | RM | |----------------------|----------|------|----|---------|----| | Compound A (DILI) | | | | | | | Compound P (DILI) | | | | | | | Telithromycin (DILI) | | | | | | | Azithromycin (DILI) | | | | | | | MK-0536 (DILI) | | | | | | | Riluzole (DILI) | | | | | | | Compound L (DILI) | | | | | | | Compound U (DILI) | | | | | | | Compound V (DILI) | | | | | | | Crizotinib (DILI) | | | | | | | Ketoconazole (DILI) | | | | | | | Compound KK (DILI) | | | | | | | Compound MM (DILI) | | | | | | | Compound QQ (DILI) | | | | | | | Compound SS (DILI) | | | | | | | Compound A4 (DILI) | | | | | | | Color Key – Data Quality | | | | |--------------------------|--|--|--| | Excellent | | | | | Good | | | | | Fair | | | | | Unavailable | | | | ### Potential Reasons for DILIsym False Negative Predictions: Lack of Toxicity Signals In in vitro Assays - DILIsym leverages in vitro mechanistic toxicity signals to predict clinical hepatotoxicity - Some DILI compounds showed no in vitro mechanistic toxicity signals, leading to false negative DILI predictions - Lack of in vitro signals is likely to be due to: - Potential contribution of metabolite(s) as assays were performed in metabolically incompetent cells or vesicles (by design) - Potential alternate mechanisms | Mechanism | Assay | System | |--|---|--| | Oxidative stress | High content imaging to evaluate drug effects on oxidative stress using probes such as dihydroethidium (DHE) | HepG2
and HepaRG
spheroids | | Mitochondrial dysfunction | Seahorse XF analyzer assays to evaluate drug effects on mitochondrial respiration | HepG2 | | Bile acid
transporter
inhibition | Transporter inhibition assays to determine IC ₅₀ of the compound interest for inhibition of BSEP, MRP3, MRP4, and NTCP | Membrane
vesicles or
transfected cell
lines | ### Potential Reasons for DILIsym False Negative Predictions: Untracked but Potentially Toxic Metabolite(s) - DILIsym tracks the exposure of each chemical entity (e.g., parent and metabolites) and links these exposures to toxicity parameters specific to each entity - DILIsym in vitro mechanistic toxicity assays are performed in cells and vesicles with minimal metabolic capacity - To evaluate the specific effects of each chemical entity (i.e., parent and metabolites) - If available, metabolites are tested separately - Some false negative compounds have known major metabolites which were not represented in DILIsym due to limited datasets - Compound A, azithromycin, telithromycin, ketoconazole, compound QQ - In recent years, HepaRG spheroids have been added to oxidative stress to evaluate effects of potentially unidentified metabolites - Compound QQ showed no toxicity signals in HepG2 but showed ROS signal in HepaRG spheroids - Future directions - In vitro testing in metabolically competent systems (requires quantification of parent and metabolites to tease out respective effects) - ML/AI to identify mechanistic signals of potential metabolites (e.g., Liver Safety Plus) ### Potential Reasons for DILIsym False Negative Predictions: Potential Alternate Mechanisms - DILIsym represents three intrinsic mechanisms of hepatocellular injury - oxidative stress, mitochondrial dysfunction, bile acid transporter inhibition - No DILI prediction indicates there is no "direct" effects on hepatocytes causing injury through three investigated mechanisms at simulated doses - It does not rule out the potential hepatocellular/cholestatic injury mediated by mechanisms not yet included in DILIsym (e.g., adaptive immune reaction, cholestatic injury, ER stress) - Compound L showed cholestatic liver signals - Compound SS and compound A4 had target-mediated immune mechanisms ## Idiosyncratic DILI Frequently Includes the Adaptive Immune System - Low frequency, delayed DILI is often associated with an adaptive immune response - Initial step includes release of antigen from hepatocyte into circulation - Subsequent presentation of same antigen at a later time can engage the cytotoxic T cells leading to hepatocyte death - Challenge for predicting potential for a compound to elicit idiosyncratic DILI: No assays can be used to identify potential antigens of compounds at the present time Clemens 2025 ## Susceptibility to Idiosyncratic DILI Frequently May Have Roots in Genetic Variability within the Adaptive Immune System - Not all antigen presenting cells (APC) interact with antigens released from hepatocytes - Genotypic variability in the major histocompatibility complex (MHC) II plays a role - Challenge for predicting potential for a compound to elicit idiosyncratic DILI: The relationship between hepatocyte antigens and varied MHC II has not been established yet Fontana 2014 ### Representations of Bile Acid and Phospholipid Disposition and Cholestatic DILI Were Updated for DILIsym 11 TYPE Original Research PUBLISHED 17 January 2023 DOI 10.3389/fphar.2022.1085621 #### **OPEN ACCESS** Fatemeh Abbasitabar, Islamic Azad University, Iran Takeshi Susukida, University of Toyama, Japan Felix Huth, Novartis Foundation, Switzerland *CORRESPONDENCE Jeffrey L. Woodhead, ☑ jeff.woodhead@simulations-plus.com *PRESENT ADDRESS Guncha Taneja, Veterinary Medicine Research and Development, Zoetis Inc., Kalamazoo, MI, United States evelopment, Zoetis Inc., Kalamiazoo Investigating bile acid-mediated cholestatic drug-induced liver injury using a mechanistic model of multidrug resistance protein 3 (MDR3) inhibition James J. Beaudoin¹, Kyunghee Yang¹, Jeffry Adiwidjaja^{1,2}, Guncha Taneja^{1,†}, Paul B. Watkins², Scott Q. Siler¹, Brett A. Howell¹ and Jeffrey L. Woodhead^{1,*} ¹DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, NC, United States, ²Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North vell¹ Carolina at Chapel Hill, Chapel Hill, NC, United States Carolina at Chapel Hill, Chapel Hill, NC, United St nd Jeffrey L. Woodhead 14 - The human bile acid (BA) and phospholipid (PL) submodels within DILIsym have been updated with new features relevant to cholestatic liver injury - Cholehepatic shunting of BAs - Biliary HCO3- secretion - Different modes of MDR3 inhibition - Non-MDR3-mediated PL efflux - Cholangiocyte regeneration - New SimPops with variability in both BA toxicity and cholestasis mechanisms was developed and validated - 30+ clean/DILI-associated exemplar compounds have been tested - Five previously developed human SimPops (e.g., NHV, NAFLD, T2D) and one rat SimPops were updated and validated - Previously developed sensitive SimCohorts based on these SimPops have been updated accordingly - In addition: a post-menopausal women (PMW) SimPops has been developed and validated ^{*}Please see our <u>manuscript</u> for more information ### Simulations of MDR3 Inhibition Illustrate the Predictive Capabilities of the Cholestatic Liver Injury Updates for DILIsym 11 - Using the updated BA and PL sub-models and SimPops in DILIsym: - Simulations predicted absence of clinically relevant cholestatic liver injury for the two clean MDR3 inhibitors loratadine and chlorpheniramine - Simulations predicted occurrence of clinically relevant cholestatic liver injury for the two DILI-associated MDR3 inhibitors itraconazole and verapamil - Hepatic exposure, MDR3 inhibition potential and MDR3 mode of inhibition are important drivers of the predicted cholestatic liver injury - Mixed inhibition (α = 30) of MDR3 may be the recommended mode of inhibition to reasonably predict cholestatic DILI liability based on additional simulations - Likely compound-specific; potential MDR3 mode of inhibition studies necessary ^{*}Please see our poster presentation for more information ### DILIsym 11 Includes a T cell Sub-model for Exploring T cell-mediated DILI - Submodel includes antigen specific CD8+ T cells and antigen presenting hepatocytes - CD8+ T cell life cycle (activation, exhaustion, proliferation, apoptosis,) - Presentation of antigen by hepatocytes determined by drug exposure - Apoptosis of antigen presenting hepatocytes induced by contact with CD8+ T cells - Human and mouse T cell SimPops - Include variability in parameters governing T cell life cycle, differentiation, cytotoxicity, and dynamics of antigen uptake/clearance by hepatocytes - Submodel supports exploration of injury profiles and drivers related to T cell mediated DILI, including conditions necessary for initiating T cell responses in novel compounds - Explorations with submodel may suggest in vitro data that could constrain outcomes and improve representations for novel compounds #### T cell sub-model diagram #### eDISH for Human T Cell SimPops treated with amodiaquine 600 mg QW #### Variability in injury dynamics during AQ 600 mg QW *Please see our manuscript for more information ## Potential Reasons for DILIsym False Negative Predictions: Population-specific Susceptibility - DILIsym represents simulated populations (SimPops) representing inter-individual variability in DILI mechanisms - Individuals with normal liver conditions - MASLD/MASH - T2D - Recently released DILIsym 11 represents new SimPops - Pediatrics - PMW - Custom SimPops can be developed for intended patient groups - Infection, inflammation, hepatocellular carcinoma - Dependent upon availability of data describing how disease affects hepatic function # DILIsym has been extensively used to evaluate small molecule-mediated hepatotoxicity Can we predict biologics-mediated hepatotoxicity? ## BIOLOGXsym is Being Developed Leveraging Mechanistic Data from In Vitro Human Liver Microphysiology System - BIOLOGXsym is a mechanistic, mathematical model which is being developed to identify biologics-induced liver injury liabilities in new biologic drug candidates and predict clinical liver injury outcomes - Collaborative efforts between Simulations Plus and University of Pittsburgh Drug Discovery Institute (UPDDI) were made to leverage data from mechanistic experiments in a human liver biomimetic (LAMPS) - Represents mechanistic pathways specific to biologics such as receptor-mediated indirect responses and target-mediated effects - Initial development supported by NIH Small Business Innovation Research (SBIR) grant phase 1 & 2 - Liver biochemistry, mechanisms, and simulated populations (SimPops) developed - Seven exemplar compounds including immune checkpoint inhibitors tested **LAMPS Assays Show Hepatocyte Stress Signals for Ipilimumab and Nivolumab** - LAMPS experimental outputs demonstrate early hepatocyte stress signals and mechanisms for ipilimumab and nivolumab - Ipilimumab significantly decreased mitochondrial function and bile efflux - Nivolumab significantly increased ROS and decreased mitochondrial function and bile efflux - Bevacizumab (negative control) did not show any significant mechanistic signals ## BIOLOGXsym Simulations Leveraging LAMPS Data Predicted Modest Hepatocyte Stress Signals by Ipilimumab and Nivolumab - Ipilimumab simulations with a SimPops representing normal liver conditions (n=285) predicted modest hepatocyte stress and ALT elevations based on intrinsic toxicity mechanisms informed by LAMPS data - Ipilimumab clinical exposure was simulated by PBPK modeling - Ipilimumab-mediated mitochondrial dysfunction parameters were optimized to the LAMPS data - Nivolumab simulations with a SimPops representing normal liver conditions (n=285) predicted mild hepatocyte stress and ALT elevations based on intrinsic toxicity mechanisms informed by LAMPS data - Nivolumab clinical exposure was simulated by PBPK modeling - Nivolumab -mediated mitochondrial dysfunction and oxidative stress parameters were optimized to the LAMPS data #### Ipilimumab (10 mg/kg IV every 3 weeks) #### Nivolumab (480 mg IV every 4 weeks) ## BIOLOGXsym Simulations Leveraging LAMPS Data Predicted Modest Hepatocyte Stress Signals by Ipilimumab and Nivolumab - LAMPS data was incorporated in BIOLOGXsym to represent hepatocyte stress signals, which set the stage for a potential adaptive immune attack by altering the liver micro-environment to be less tolerogenic and more inflammatory - Hypothesis: immune checkpoint inhibitors can induce low-level hepatocyte stress (e.g., indirect effects via Kupffer cells that express PD-1 and CTLA-4 and/or off-target effects) and sensitize liver to T cell effects - LAMPS provides mechanistic insights underlying hepatocyte stress/liver sensitization Uetrecht et al. (2021) Int J Mol Sci ## A Staged Approach for QST Modeling of Immune Checkpoint Inhibitor-Mediated Hepatotoxicity - 1. Develop and validate PBPK models of ipilimumab and nivolumab - Estimate plasma and liver concentrations of ipilimumab and nivolumab - Identify direct hepatocyte stress mechanisms from LAMPS assays - Simulate hepatic responses based on direct hepatocyte stress signals - Does not include target-mediated effects yet - 4. Simulate hepatic responses combining direct hepatocyte stress mechanisms and targetmediated mechanisms for adaptive immune systems - Ipi or nivo amplifies CD8+ T cell response - Ipi increases effector CD8+ T cell prolif, mediator production, cytotoxicity - Nivo increases exhausted CD8+ T cell prolif, mediator production, cytotoxicity ### CD8+ T Cell Representation Is Being Developed in BIOLOGXsym to Investigate Requirements for T cell Cytotoxicity to Explain ICI Hepatitis Not all modeled links shown in diagram, for visual clarity ### Every method has limitations Understanding those limitations allows for proper interpretation of results ## Data Needs to Support Mechanistic Toxicity Modeling in DILIsym –Typically Gathered #### **Mechanistic Data Description*** Ki or IC₅₀ of Compound X inhibition of human BSEP, human MRP3, human MRP4, human MDR3, and human NTCP EC₅₀ of Compound X effects on mitochondrial electron transport chain inhibition and/or proton gradient uncoupling EC₅₀ of Compound X effects on reactive oxygen species production (parent) EC₅₀ of Compound X effects on reactive oxygen species production (parent + metabolites) IC₅₀ assays or Ki measurements Cellular OCR assays (HepG2) Cellular ROS assays (HepG2) Cellular ROS assays (HepaRG spheroids) ^{*}Raw data typically used by Simulations Plus Services team to define DILIsym input parameters