Pan-genome mediated therapeutic target mining in Kingella kingae and inhibition assessment using traditional Chinese medicinal compounds: an informatics approach

Authors: Basharat Z, Meshal A
Publication: J Biomol Struct Dyn
Software: GastroPlus®

Kingella kingae causes bacteremia, endocarditis, osteomyelitis, septic arthritis, meningitis, spondylodiscitis, and lower respiratory tract infections in pediatric patients. Usually it demonstrates disease after inflammation of mouth, lips or infections of the upper respiratory tract. To date, therapeutic targets in this bacterium remain unexplored. We have utilized a battery of bioinformatics tools to mine these targets in this study. Core genes were initially inferred from 55 genomes of K. kingae and 39 therapeutic targets were mined using an in-house pipeline. We selected aroG product (KDPG aldolase) involved in chorismate pathway, for inhibition analysis of this bacterium using lead-like metabolites from traditional Chinese medicinal plants. Pharmacophore generation was done using control ZINC36444158 (1,16-bis[(dihydroxyphosphinyl)oxy]hexadecane), followed by molecular docking of top hits from a library of 36,000 compounds. Top prioritized compounds were ZINC95914016, ZINC33833283 and ZINC95914219. ADME profiling and simulation of compound dosing (100 mg tablet) was done to infer compartmental pharmacokinetics in a population of 300 individuals in fasting state. PkCSM based toxicity analysis revealed the compounds ZINC95914016 and ZINC95914219 as safe and with almost similar bioavailability. However, ZINC95914016 takes less time to reach maximum concentration in the plasma and shows several optimal parameters compared to other leads. In light of obtained data, we recommend this compound for further testing and induction in experimental drug design pipeline.

By Zarrin Basharat, Alotaibi Meshal