Resource Center

Nov 22, 2020

A Novel Eutectic-Based Transdermal Delivery System for Risperidone

Abstract

This paper reports for the first time the possible formation of a novel room temperature therapeutic deep eutectic solvent (THEDES) of risperidone (RIS) with some fatty acids, namely capric acid (C10; CA), lauric acid (C12; LA), and myristic acid (C14; MA). All mixtures of RIS and MA yielded a solid or pasty-like solid and were readily discarded. Some of the prepared THEDESs from RIS and CA or LA have spontaneously transformed into a transparent liquid, without any precipitate at room temperature by simple physical mixing of the components. From the DSC thermograms, phase diagrams of the eutectic systems were constructed and the lowest obtained melting point for a RIS:CA mixture was 17°C at 40:60% w/w ratio. While 22°C was recorded as the lowest melting point for RIS:LA at a ratio of 30:70% w/w, solubility improvement of RIS was up to 70,000-fold compared with water. Freeze-drying microscopy provided valuable information regarding the phase change and transitions the drug undergoes as a function of temperature and it clarifies the interpretation of the DSC results and provides valuable evidence of drug crystals co-melting within the fatty acid base. The presence of natural fatty acid as one component of THEDES and the depression in the melting point significantly (P < 0.05) enhanced RIS skin permeation. Rheological studies showed a viscosity temperature dependency of the DES and well fitted to the Arrhenius equation. Application of the obtained THEDES on the shaved skin of rats revealed the absence of any irritation or edema effects.

By Faisal Al-Akayleh, Samer Adwan, Mai Khanfer, Nasir Idkaidek & Mayyas Al-Remawi

Contact Us About This Journal Article