Biopolymer-Capped Pyrazinamide-Loaded Colloidosomes: In Vitro Characterization and Bioavailability Studies

Publication: ACS Omega
Software: GastroPlus®


This study aimed to prepare colloidosome particles loaded with pyrazinamide (PZA). These drug-loaded colloidosomes were prepared using an in situ gelation technique using a central composite design with a shell made of calcium carbonate (CaCO3) particles. Optimal amounts of 150 mg of CaCO3, sodium alginate (2%), and 400 mg of poly(3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV) concentration resulted in the maximum drug loading and efficient release profile. Field emission scanning electron microscopy results showed spherical porous particles with a good coating of the PHBV polymer. Additionally, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric and differential thermal analysis (TGA-DTA), and X-ray diffraction (XRD) analysis showed good compatibility between the drug and excipients. The pharmacokinetic studies demonstrated that the drug-loaded colloidosomes resulted in 4.26 times higher plasma drug concentrations with Cmax values of 32.386 ± 2.744 mcg/mL (PZA solution) and 115.868 ± 53.581 mcg/mL (PZA-loaded colloidosomes) and AUC0–t values of 61.24 mcg-h/mL (PZA solution) and 260.9 mcg-h/mL (PZA-loaded colloidosomes), indicating that colloidosomes have the potential to be effective drug carriers for delivering PZA to the target site.

By Avi Singh, Sabya Sachi Das, Janne Ruokolainen, Kavindra Kumar Kesari, and Sandeep Kumar Singh