Resource Center

Sep 7, 2019

Design, synthesis, and biological activity of Plastoquinone analogs as a new class of anticancer agents

Abstract

In this paper, based on Plastoquinone (PQ) analogs possessing substituted aniline containing alkoxy group(s), new 2,3-dimethyl-5-amino-1,4-benzoquinones (PQ1-15) were designed and synthesized in either two steps or one-pot reaction. Specifically, the substituted amino moiety containing mono or poly alkoxy group(s) with various positions and groups were mainly explored to understand the structure-activity relationships for the cytotoxic activity against three human cancer cell lines (K562, Jurkat, and MT-2) and human peripheral blood mononuclear cells (PBMC). PQ2 was found to be most effective anticancer compound on K562 and Jurkat cell lines with IC50 values of 6.40 ± 1.73 μM and 7.72 ± 1.49 μM, respectively. Interestingly, the compound was non-cytotoxic to normal PBMC and also MT-2 cancer cells. PQ2 which showed significant selectivity in MTT assay was chosen for apoptotic/necrotic evaluation and results exhibited that it induced apoptosis in K562 cell line after 6 h of treatment. PQ2 showed anti-Abelson kinase 1 (Abl1) activity with different inhibitory profile than Imatinib in the panel of eight kinases. The binding mode of PQ2 into Abl ATP binding pocket was predicted in silico showing the formation of some key interactions. In addition, PQ2 induced Bcr-Abl1 mediated ERK pathway in human chronic myelogenous leukemia (CML) cells. Furthermore, DNA-cleaving capability of PQ2 was clearly enhanced by iron (II) complex system. Afterward, a further in silico ADMET prediction revealed that PQ2 possesses desirable drug-like properties and favorable safety profile. These results indicated that PQ2 has multiple mechanism of action and two of them are anti-Bcr-Abl1 and DNA-cleaving activity. This study suggests that Plastoquinone analogs could be potential candidates for multi-target anticancer therapy.

Contact Us About This Journal Article