Evaluating supersaturation in vitro and predicting its performance in vivo with Biphasic Gastrointestinal Simulator: A case study of a BCS IIB drug

Publication: Int J Pharm
Software: GastroPlus®


This study aimed to develop an evaluation approach for supersaturation by employing an in vitro bio-mimicking apparatus designed to predict in vivo performance. The Biphasic Gastrointestinal Simulator (BGIS) is composed of three chambers with absorption phases that represent the stomach, duodenum, and jejunum, respectively. The concentration of apatinib in each chamber was detected by fiber optical probes in situ. The dissolution data and the pharmacokinetic data were correlated by GastroplusTM. The precipitates were characterized by polarizing microscope, Scanning Electron Microscopy, Powder X-ray diffraction and Differential scanning calorimetry. According to the results, Vinylpyrrolidone-vinyl acetate copolymer (CoPVP) prolonged supersaturation by improving solubility and inhibiting crystallization, while Hydroxypropyl methylcellulose (HPMC) prolonged supersaturation by inhibiting crystallization alone. Furthermore, a predictive in vitroin vivo correlation was established, which confirmed the anti-precipitation effect of CoPVP and HPMC on in vitro performance and in vivo behavior. In conclusion, CoPVP and HPMC increased and prolonged the supersaturation of apatinib, and then improved its bioavailability. Moreover, BGIS was demonstrated to be a significant approach for simulating in vivo conditions for in vitroin vivo correlation in a supersaturation study. This study presents a promising approach for evaluating supersaturation, screening precipitation inhibitors in vitro, and predicting their performances in vivo.