Resource Center

Mar 24, 2021

Experimental Solubility, Thermodynamic/Computational Validations, and GastroPlus-Based In Silico Prediction for Subcutaneous Delivery of Rifampicin

Abstract

We focused to explore a suitable solvent for rifampicin (RIF) recommended for subcutaneous (sub-Q) delivery [ethylene glycol (EG), propylene glycol (PG), tween 20, polyethylene glycol-400 (PEG400), oleic acid (OA), N-methyl-2-pyrrolidone (NMP), cremophor-EL (CEL), ethyl oleate (EO), methanol, and glycerol] followed by computational validations and in-silico prediction using GastroPlus. The experimental solubility was conducted over temperature ranges T = 298.2–318.2 K) and fixed pressure (p = 0.1 MPa) followed by validation employing computational models (Apelblat, and vanʼt Hoff). Moreover, the HSPiP solubility software provided the Hansen solubility parameters. At T = 318.2K, the estimated maximum solubility (in term of mole fraction) values of the drug were in order of NMP (11.9 × 10-2) ˃ methanol (6.8 × 10-2) ˃ PEG400 (4.8 × 10-2) ˃ tween 20 (3.4 × 10-2). The drug dissolution was endothermic process and entropy driven as evident from “apparent thermodynamic analysis”. The activity coefficients confirmed facilitated RIF–NMP interactions for increased solubility among them. Eventually, GastroPlus predicted the impact of critical input parameters on major pharmacokinetics responses after sub-Q delivery as compared to oral delivery. Thus, NMP may be the best solvent for sub-Q delivery of RIF to treat skin tuberculosis (local and systemic) and cutaneous related disease at explored concentration.

By Wael A. Mahdi, Afzal Hussain, Mohammad A. Altamimi, Sultan Alshehri, Sarah I. Bukhari & Mohd Neyaz Ahsan

Contact Us About This Journal Article